首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Design Techniques to Facilitate Processor Power Delivery in 3-D Processor-DRAM Integrated Systems
【24h】

Design Techniques to Facilitate Processor Power Delivery in 3-D Processor-DRAM Integrated Systems

机译:在3D处理器-DRAM集成系统中促进处理器供电的设计技术

获取原文
获取原文并翻译 | 示例

摘要

As a promising option to address the memory wall problem, 3-D processor-DRAM integration has recently received many attentions. Since DRAM dies should be stacked between the processor die and package substrate, we have to fabricate a large number of through-DRAM through-silicon vias (TSVs) to connect the processor die and package for power and input/output (I/O) signal delivery. Although such through-DRAM TSVs will inevitably interfere with DRAM design and induce non-negligible power consumption overhead, little prior research has been done to study how to allocate these through-DRAM TSVs on the DRAM dies and analyze their impacts. To address this open issue, this paper first presents a through-DRAM TSV allocation strategy that well fits to the regular DRAM architecture. Meanwhile, due to the longer path between power/ground pads and processor die, power delivery integrity issue may become more serious in such 3-D processor-DRAM integrated systems. Decoupling capacitor insertion is the most popular method to deal with power delivery integrity issue in high-performance integrated circuits. This paper further proposes to use 3-D stacked DRAM dies to provide decoupling capacitors for the processor die. This can well leverage the superior capacitor fabrication ability of DRAM to reduce the area penalty of decoupling capacitor insertion on the processor die. For its practical implementation, a simple uniform decoupling capacitor network design strategy is presented. To demonstrate through-DRAM TSV allocation and decoupling capacitor insertion strategy and evaluate involved tradeoffs, circuit SPICE simulations and computer system simulations are carried out to quantitatively demonstrate the effectiveness and investigate various design tradeoffs.
机译:作为解决内存壁问题的有前途的选择,3-D处理器-DRAM集成最近受到了很多关注。由于DRAM管芯应堆叠在处理器管芯和封装基板之间,因此我们必须制造大量的DRAM直通硅通孔(TSV),以连接处理器管芯和封装以实现电源和输入/输出(I / O)信号传递。尽管此类直通DRAM TSV不可避免地会干扰DRAM设计并产生不可忽略的功耗开销,但很少有先前的研究来研究如何在DRAM管芯上分配这些直通DRAM TSV并分析其影响。为了解决这个悬而未决的问题,本文首先提出了一种通过DRAM TSV分配策略,该策略非常适合常规DRAM架构。同时,由于电源/接地垫与处理器管芯之间的路径较长,因此在此类3D处理器-DRAM集成系统中,电源传输完整性问题可能会变得更加严重。去耦电容器的插入是解决高性能集成电路中功率输送完整性问题的最流行方法。本文还建议使用3-D堆叠DRAM芯片为处理器芯片提供去耦电容器。这可以很好地利用DRAM出色的电容器制造能力,以减少在处理器管芯上插入去耦电容器的面积损失。对于其实际实现,提出了一种简单的均匀去耦电容器网络设计策略。为了演示通过DRAM的TSV分配和去耦电容器的插入策略并评估所涉及的折衷,进行了电路SPICE仿真和计算机系统仿真,以定量验证其有效性并研究各种设计折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号