首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Fourier Series Approximation for Max Operation in Non-Gaussian and Quadratic Statistical Static Timing Analysis
【24h】

Fourier Series Approximation for Max Operation in Non-Gaussian and Quadratic Statistical Static Timing Analysis

机译:非高斯和二次统计静态时序分析中最大运算的傅里叶级数逼近

获取原文
获取原文并翻译 | 示例

摘要

The most challenging problem in the current block-based statistical static timing analysis (SSTA) is how to handle the max operation efficiently and accurately. Existing SSTA techniques suffer from limited modeling capability by using a linear delay model with Gaussian distribution, or have scalability problems due to expensive operations involved to handle non-Gaussian variation sources or nonlinear delays. To overcome these limitations, we propose efficient algorithms to handle the max operation in SSTA with both quadratic delay dependency and non-Gaussian variation sources simultaneously. Based on such algorithms, we develop an SSTA flow with quadratic delay model and non-Gaussian variation sources. All the atomic operations, max and add, are calculated efficiently via either closed-form formulas or low dimension (at most 2-D) lookup tables. We prove that the complexity of our algorithm is linear in both variation sources and circuit sizes, hence our algorithm scales well for large designs. Compared to Monte Carlo simulation for non-Gaussian variation sources and nonlinear delay models, our approach predicts the mean, standard deviation and 95% percentile point with less than 2% error, and the skewness with less than 10% error.
机译:当前基于块的统计静态时序分析(SSTA)中最具挑战性的问题是如何高效,准确地处理最大操作。现有的SSTA技术通过使用具有高斯分布的线性延迟模型而受到建模能力的限制,或者由于处理非高斯变化源或非线性延迟所涉及的昂贵操作而具有可伸缩性问题。为了克服这些限制,我们提出了有效的算法来处理SSTA中的最大运算,同时具有二次延迟依赖性和非高斯变化源。基于此类算法,我们开发了具有二次延迟模型和非高斯变异源的SSTA流。通过封闭式公式或低维(最多二维)查找表,可以高效地计算所有原子操作(max和add)。我们证明了我们的算法的复杂性在变化源和电路尺寸上都是线性的,因此我们的算法可很好地用于大型设计。与非高斯变异源和非线性延迟模型的蒙特卡洛模拟相比,我们的方法可以预测均值,标准偏差和95%百分点,误差小于2%,偏度小于10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号