首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Statistical static timing analysis with conditional linear MAX/MIN approximation and extended canonical timing model
【24h】

Statistical static timing analysis with conditional linear MAX/MIN approximation and extended canonical timing model

机译:具有条件线性MAX / MIN逼近和扩展规范时序模型的静态统计时序分析

获取原文
获取原文并翻译 | 示例

摘要

An efficient and accurate statistical static timing analysis (SSTA) algorithm is reported in this paper, which features 1) a conditional linear approximation method of the MAX/MIN timing operator, 2) an extended canonical representation of correlated timing variables, and 3) a variation pruning method that facilitates intelligent tradeoff between simulation time and accuracy of simulation result. A special design focus of the proposed algorithm is on the propagation of the statistical correlation among timing variables through nonlinear circuit elements. The proposed algorithm distinguishes itself from existing block-based SSTA algorithms in that it not only deals with correlations due to dependence on global variation factors but also correlations due to signal propagation path reconvergence. Tested with the International Symposium on Circuits and Systems (ISCAS) benchmark suites, the proposed algorithm has demonstrated very satisfactory performance in terms of both accuracy and running time. Compared with Monte-Carlo-based statistical timing simulation, the output probability distribution got from the proposed algorithm is within 1.5% estimation error while a 350 times speed-up is achieved over a circuit with 5355 gates.
机译:本文报道了一种高效,准确的统计静态时序分析(SSTA)算法,该算法具有以下特征:1)MAX / MIN时序算子的条件线性逼近方法,2)相关时序变量的扩展规范表示,以及3)a变异修剪方法,有助于在模拟时间和模拟结果的准确性之间进行智能权衡。该算法的一个特殊设计重点是通过非线性电路元件在时序变量之间的统计相关性传播。所提出的算法与现有的基于块的SSTA算法的不同之处在于,它不仅处理由于依赖于全局变化因子而引起的相关性,而且还处理了由于信号传播路径重新收敛而引起的相关性。经过国际电路与系统专题讨论会(ISCAS)基准套件的测试,提出的算法在准确性和运行时间方面均表现出非常令人满意的性能。与基于蒙特卡洛的统计时序仿真相比,该算法得到的输出概率分布的估计误差在1.5%以内,而在具有5355个门的电路上实现了350倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号