首页> 外文学位 >Max operation in Statistical Static Timing Analysis on the non-Gaussian variation sources for VLSI circuits.
【24h】

Max operation in Statistical Static Timing Analysis on the non-Gaussian variation sources for VLSI circuits.

机译:针对VLSI电路的非高斯变化源的统计静态时序分析中的最大操作。

获取原文
获取原文并翻译 | 示例

摘要

As CMOS technology continues to scale down, process variation introduces significant uncertainty in power and performance to VLSI circuits and significantly affects their reliability. If this uncertainty is not properly handled, it may become the bottleneck of CMOS technology improvement. As a result, deterministic analysis is no longer conservative and may result in either overestimation or underestimation of the circuit delay. As we know that Static-Timing Analysis (STA) is a deterministic way of computing the delay imposed by the circuits design and layout. It is based on a predetermined set of possible events of process variations, also called corners of the circuit. Although it is an excellent tool, current trends in process scaling have imposed significant difficulties to STA. Therefore, there is a need for another tool, which can resolve the aforementioned problems, and Statistical Static Timing Analysis (SSTA) has become the frontier research topic in recent years in combating such variation effects.;There are two types of SSTA methods, path-based SSTA and block-based SSTA. The goal of SSTA is to parameterize timing characteristics of the timing graph as a function of the underlying sources of process parameters that are modeled as random variables. By performing SSTA, designers can obtain the timing distribution (yield) and its sensitivity to various process parameters. Such information is of tremendous value for both timing sign-off and design optimization for robustness and high profit margins. The block-based SSTA is the most efficient SSTA method in recent years. In block-based SSTA, there are two major atomic operations max and add. The add operation is simple; however, the max operation is much more complex.;There are two main challenges in SSTA. The Topological Correlation that emerges from reconvergent paths, these are the ones that originate from a common node and then converge again at another node (reconvergent node). Such correlation complicates the maximum operation. The second challenge is the Spatial Correlation. It arises due to device proximity on the die and gives rise to the problems of modeling delay and arrival time.;This dissertation presents statistical Nonlinear and Nonnormals canonical form of timing delay model considering process variation. This dissertation is focusing on four aspects: (1) Statistical timing modeling and analysis; (2) High level circuit synthesis with system level statistical static timing analysis; (3) Architectural implementations of the atomic operations (max and add); and (4) Design methodology.;To perform statistical timing modeling and analysis, we first present an efficient and accurate statistical static timing analysis (SSTA) flow for non-linear cell delay model with non-Gaussian variation sources.;To achieve system level SSTA we apply statistical timing analysis to high-level synthesis flow, and develop yield driven synthesis framework so that the impact of process variations is taken into account during high-level synthesis.;To accomplish architectural implementation, we present the vector thread architecture for max operator to minimize delay and variation. Finally, we present comparison analysis with ISCAS benchmark circuits suites.;In the last part of this dissertation, a SSTA design methodology is presented.
机译:随着CMOS技术的不断缩小,工艺变化给VLSI电路带来了功率和性能上的极大不确定性,并严重影响了其可靠性。如果不能正确处理此不确定性,则可能成为CMOS技术改进的瓶颈。结果,确定性分析不再是保守的,可能会导致电路延迟的高估或低估。众所周知,静态时序分析(STA)是一种确定性方法,可以计算电路设计和布局所施加的延迟。它基于过程变化的可能事件的预定集合,也称为电路的拐角。尽管它是一种出色的工具,但是当前过程缩放的趋势已给STA带来了巨大的困难。因此,需要另一种可以解决上述问题的工具,统计静态时序分析(SSTA)近年来已成为解决此类变异效应的前沿研究课题。SSTA方法有两种类型,即路径基于SSTA和基于块的SSTA。 SSTA的目标是根据作为随机变量建模的过程参数的基础来源,对时序图的时序特性进行参数化。通过执行SSTA,设计人员可以获得时序分布(产量)及其对各种工艺参数的敏感性。这样的信息对于时序签核和鲁棒性和高利润率的设计优化都具有巨大的价值。基于块的SSTA是近年来最有效的SSTA方法。在基于块的SSTA中,max和add有两个主要的原子操作。添加操作很简单;但是,最大操作要复杂得多。; SSTA有两个主要挑战。从收敛路径中出现的拓扑相关性是从公共节点起源,然后又在另一个节点(收敛节点)收敛的拓扑相关性。这种相关使最大操作复杂化。第二个挑战是空间相关性。它是由于器件在裸片上的接近性而产生的,并引起了建模延迟和到达时间的问题。;本文提出了考虑过程变化的时序延迟模型的统计非线性和非正规正则形式。本文的研究主要集中在四个方面:(1)统计时序建模与分析; (2)高级电路综合,系统级统计静态时序分析; (3)原子运算的体系结构实现(max和add); (4)设计方法。为了进行统计时序建模和分析,我们首先提出了一种具有非高斯变化源的非线性信元延迟模型的高效,准确的统计静态时序分析(SSTA)流程。 SSTA我们将统计时序分析应用于高级综合流程,并开发产量驱动的综合框架,以便在高级综合过程中考虑过程变化的影响。操作员以最大程度地减少延迟和变化。最后,给出了与ISCAS基准电路套件的比较分析。在本文的最后,提出了一种SSTA设计方法。

著录项

  • 作者

    Baker, Abu M.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号