首页> 外文学位 >Statistical Analysis and Optimization for Timing and Power of VLSI Circuits.
【24h】

Statistical Analysis and Optimization for Timing and Power of VLSI Circuits.

机译:VLSI电路时序和功率的统计分析和优化。

获取原文
获取原文并翻译 | 示例

摘要

As CMOS technology scales down, process variation introduces significant uncertainty in power and performance to VLSI circuits and significantly affects their reliability. If this uncertainty is not properly handled, it may become the bottleneck of CMOS technology improvement. This dissertation proposes novel techniques to model, analyze, and optimize power and performance of FPGAs and ASICs considering process variation. This dissertation focuses on two aspects: (1) Process and architecture concurrent optimization for FPGAs; (2) Statistical timing modeling and analysis.;To perform process and architecture concurrent optimization, an efficient and accurate FPGA power, delay, and variation evaluator, Ptrace, is proposed. With Ptrace, we present the first in-depth study on device and FPGA architecture co-optimization to minimize power, delay, area, and variation considering hundreds of device and architecture combinations. Furthermore, to enable early stage process and architecture co-optimization without stable device models, we develop transistor level and circuit level power, delay, and reliability models and incorporate them with Ptrace. With the extended Ptrace, we perform architecture and process parameters concurrent optimization for FPGA power, delay, variation, and reliability.;To perform statistical timing modeling and analysis, we first present an efficient and accurate statistical static timing analysis (SSTA) flow for non-linear cell delay model with non-Gaussian variation sources. All operations in this flow are performed by analytical equations without any time consuming numerical approach. Then, to further improve the efficiency and accuracy of statistical timing analysis, we develop a new die-level spatial variation model which accurately models the across-wafer variation. Besides modeling spatial variation, mean and variance uncertainty introduced by limited number of samples is another problem in SSTA. To solve this problem, we evaluate the confidence for statistical analysis and estimate the guardband value to ensure a target confidence.;To the best of our knowledge, this dissertation is the first novel study of device, process, and architecture concurrent co-optimization for FPGA power, delay, variation, and reliability; and is the first work to model across-wafer variation at die-level and to consider confidence guardband in statistical analysis.
机译:随着CMOS技术的缩减,工艺变化给VLSI电路带来了功率和性能上的极大不确定性,并极大地影响了其可靠性。如果不能正确处理此不确定性,则可能成为CMOS技术改进的瓶颈。本文提出了一种新的技术,可以在考虑工艺变化的情况下对FPGA和ASIC的功耗和性能进行建模,分析和优化。本文着眼于两个方面:(1)FPGA的过程和架构并发优化; (2)统计时序建模和分析;为了执行过程和架构并行优化,提出了一种高效,准确的FPGA功耗,延迟和变化评估器Ptrace。借助Ptrace,我们首次进行了关于设备和FPGA架构协同优化的深入研究,以考虑到数百种设备和架构组合,以最大程度地降低功耗,延迟,面积和变化。此外,为了在没有稳定的器件模型的情况下实现早期工艺和架构的协同优化,我们开发了晶体管级和电路级的功率,延迟和可靠性模型,并将它们与Ptrace结合在一起。借助扩展的Ptrace,我们可以针对FPGA的功耗,延迟,变异性和可靠性执行架构和过程参数并发优化;为了执行统计时序建模和分析,我们首先提出了一种有效且准确的非静态统计静态时序分析(SSTA)流程。非高斯变化源的线性单元延迟模型。该流程中的所有操作均由解析方程式执行,而无需任何耗时的数值方法。然后,为了进一步提高统计时序分析的效率和准确性,我们开发了一种新的裸片级空间变化模型,该模型可以准确地模拟晶圆间的变化。除了对空间变化建模外,有限数量的样本引入的均值和方差不确定性也是SSTA中的另一个问题。为了解决这个问题,我们评估了置信度以进行统计分析,并估计保护带值以确保目标置信度。;据我们所知,本论文是针对设备,过程和体系结构并发协同优化的首次新颖研究。 FPGA的功耗,延迟,变化和可靠性;这是在晶片级建模跨晶片变化并在统计分析中考虑置信度的第一项工作。

著录项

  • 作者

    Cheng, Lerong.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Statistics.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号