首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >A Scalable Statistical Static Timing Analyzer Incorporating Correlated Non-Gaussian and Gaussian Parameter Variations
【24h】

A Scalable Statistical Static Timing Analyzer Incorporating Correlated Non-Gaussian and Gaussian Parameter Variations

机译:包含相关非高斯和高斯参数变化的可扩展统计静态时序分析器

获取原文
获取原文并翻译 | 示例

摘要

We propose a scalable efficient parameterized block-based statistical static timing analysis (SSTA) algorithm incorporating both Gaussian and non-Gaussian parameter distributions, capturing spatial correlations using a grid-based model. As a preprocessing step, we employ an independent component analysis to transform the set of correlated non-Gaussian parameters to a basis set of parameters that are statistically independent. Given the moments of the variational parameters, we use a PadÉ-approximation-based moment-matching scheme to generate the distributions of the random variables representing the signal arrival times and preserve correlation information by propagating arrival times in a canonical form. Our SSTA procedure is able to generate the circuit delay distributions with reasonably small prediction errors. For the ISCAS89 benchmark circuits, as compared to Monte Carlo simulations, we obtain average errors of 0.99%, 2.05%, 2.33%, and 2.36%, respectively, in the mean, standard deviation, and 5% and 95% quantile points of the circuit delay. Experimental results show that our procedure can handle as many as 256 correlated non-Gaussian variables in about 5 min of runtime. For a circuit with $vert Gvert$ gates and a layout with $g$ spatial correlation grids, the complexity of our approach is $O(gvert Gvert)$.
机译:我们提出了一种可扩展的,高效的,基于参数的基于块的统计静态时序分析(SSTA)算法,结合了高斯和非高斯参数分布,并使用基于网格的模型来捕获空间相关性。作为预处理步骤,我们采用独立成分分析将相关的非高斯参数集转换为统计上独立的基本参数集。给定变化参数的矩,我们使用基于PadÉ近似的矩匹配方案来生成代表信号到达时间的随机变量的分布,并通过以标准形式传播到达时间来保留相关信息。我们的SSTA程序能够以较小的预测误差生成电路延迟分布。对于ISCAS89基准电路,与蒙特卡罗模拟相比,我们获得的平均误差分别为0.99%,2.05%,2.33%和2.36%,平均误差为5%,95%和95%。电路延迟。实验结果表明,我们的过程可以在大约5分钟的运行时间内处理多达256个相关的非高斯变量。对于具有$ vert Gvert $门和具有$ g $空间相关网格的布局的电路,我们方法的复杂度为$ O(gvert Gvert)$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号