首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Logical Effort Framework for CNFET-Based VLSI Circuits for Delay and Area Optimization
【24h】

Logical Effort Framework for CNFET-Based VLSI Circuits for Delay and Area Optimization

机译:用于延迟和面积优化的基于CNFET的VLSI电路的逻辑努力框架

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotube field-effect transistors (CNFETs) show great potential to build digital systems on advanced technology nodes with big benefits in terms of power, performance, and area (PPA). However, CNFET-specific additional features such as the number of tubes, pitch (spacing between tubes), tube position, and diameter in array of tubes play a significant role in accurate PPA evaluation. Furthermore, count and density variations in carbon nanotubes (CNTs) due to manufacturing limitations, like the presence of metallic tubes in the CNFET channel, degrade the anticipated PPA benefits. Moreover, modeling the CNFET parameters, CNT variations and etching techniques for CNTs create additional complexity during performance optimization. Hence, for realistic optimization of CNFET circuit's performance, it is imperative to incorporate the impact of these parameters and variations. In this paper, we propose delay models [pitch-aware logical effort (PALE) and position-aware pitch factor (PAPF)] for fast and accurate performance evaluation by including the impact due to CNFET-specific parameters and CNT variations. These models are developed based on industry standard logical effort framework. Furthermore, we present an optimization tool using PALE and PAPF to minimize the delay and area of CNFET circuits. We deploy several circuit-level techniques prior to optimizing the tubes (CNTs) in the logic gates to achieve globally optimum solution. For better optimization of the circuits, we also include the impact of wire parasitic in estimating the delay of the individual gates. Our optimization tool results in the maximum and average delay improvement by 27% and 17%, respectively, and 2.5x reduction in area for standard ISCAS and OpenSPARC benchmark circuits. Fast and fairly accurate delay computation in our optimization framework offers great runtime benefits as compared to state-of-the-art simulation and statistical-based methods.
机译:碳纳米管场效应晶体管(CNFET)具有在先进技术节点上构建数字系统的巨大潜力,在功率,性能和面积(PPA)方面具有巨大优势。但是,CNFET特有的附加功能(例如管的数量,节距(管之间的间距),管的位置以及管阵列中的直径)在准确的PPA评估中起着重要的作用。此外,由于制造限制,例如CNFET通道中存在金属管,导致碳纳米管(CNT)的数量和密度变化降低了预期的PPA收益。此外,在性能优化过程中,对CNFET参数,CNT变化和CNT蚀刻技术进行建模会增加额外的复杂性。因此,为了切实优化CNFET电路的性能,必须考虑这些参数和变化的影响。在本文中,我们提出了延迟模型[音高感知逻辑努力(PALE)和位置感知音高因子(PAPF)],以通过包括因CNFET特定的参数和CNT变化引起的影响来进行快速,准确的性能评估。这些模型是基于行业标准的逻辑努力框架开发的。此外,我们提出了一种使用PALE和PAPF的优化工具,以最小化CNFET电路的延迟和面积。在优化逻辑门中的电子管(CNT)之前,我们部署了几种电路级技术以实现全局最佳解决方案。为了更好地优化电路,我们在估计各个栅极的延迟时还考虑了导线寄生的影响。我们的优化工具使标准ISCAS和OpenSPARC基准电路的最大和平均延迟分别提高了27%和17%,面积减少了2.5倍。与最先进的仿真和基于统计的方法相比,我们优化框架中的快速且准确的延迟计算可提供巨大的运行时优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号