首页> 外文期刊>User modeling and user-adapted interaction >Comparing context-aware recommender systems in terms of accuracy and diversity
【24h】

Comparing context-aware recommender systems in terms of accuracy and diversity

机译:在准确性和多样性方面比较上下文感知推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Although the area of context-aware recommender systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable "best bet" when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.
机译:尽管在过去几年中,上下文感知推荐系统(CARS)取得了显着进展,但是比较各种上下文预过滤,后过滤和上下文建模方法的问题仍然没有得到很好的探讨。在本文中,我们解决了这个问题,并根据建议的准确性和多样性比较了几种上下文预过滤,后过滤和上下文建模方法,以确定哪种方法在其他情况下优于其他方法。为此,我们考虑了影响CARS方法性能的三个主要因素,例如推荐任务的类型,上下文粒度和推荐数据的类型。我们表明,在所有这些因素和其他实验设置中,没有一种考虑的CARS方法能够统一地主导其他方法。但是在选择合理的CARS方法时,一定组的上下文建模方法构成了可靠的“最佳选择”,因为它们在上下文建议的准确性和多样性之间取得了很好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号