首页> 外文OA文献 >Comparing Context-Aware Recommender Systems in Terms of Accuracy andDiversity: Which Contextual Modeling, Pre-filtering and Post-FilteringMethods Perform the Best
【2h】

Comparing Context-Aware Recommender Systems in Terms of Accuracy andDiversity: Which Contextual Modeling, Pre-filtering and Post-FilteringMethods Perform the Best

机译:从准确性和角度比较上下文意识推荐系统多样性:哪种上下文建模,预过滤和后过滤方法执行最佳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the area of Context-Aware Recommender Systems (CARS) has made asignificant progress over the last several years, the problem ofcomparing various contextual pre-filtering, post-filtering andcontextual modeling methods remained fairly unexplored. In this paper,we address this problem and compare several contextual pre-filtering,post-filtering and contextual modeling methods in terms of the accuracyand diversity of their recommendations to determine which methodsoutperform the others and under which circumstances. To this end, weconsider three major factors affecting performance of CARS methods, suchas the type of the recommendation task, context granularity and the typeof the recommendation data. We show that none of the considered CARSmethods uniformly dominates the others across all of these factors andother experimental settings; but that a certain group of contextualmodeling methods constitutes a reliable “best bet” whenchoosing a sound CARS approach since they provide a good balance ofaccuracy and diversity of contextual recommendations.
机译:尽管在过去几年中上下文感知推荐系统(CARS)领域取得了长足的进步,但是比较各种上下文预过滤,后过滤和上下文建模方法的问题仍未得到充分探索。在本文中,我们解决了这个问题,并从建议的准确性和多样性方面比较了几种上下文预过滤,后过滤和上下文建模方法,以确定哪种方法在其他情况下优于其他方法。为此,我们考虑了影响CARS方法性能的三个主要因素,例如推荐任务的类型,上下文粒度和推荐数据的类型。我们表明,在所有这些因素和其他实验设置中,没有一种考虑的CARS方法统一地支配其他方法。但是在选择合理的CARS方法时,一定组的上下文建模方法构成了可靠的“最佳选择”,因为它们可以在上下文建议的准确性和多样性之间取得良好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号