首页> 外文期刊>Thin Solid Films >Enhanced zirconia oxide dielectric quality of germanium p-channel metal oxide semiconductor field effect transistor by in-situ low temperature treatment in atomic layer deposition process
【24h】

Enhanced zirconia oxide dielectric quality of germanium p-channel metal oxide semiconductor field effect transistor by in-situ low temperature treatment in atomic layer deposition process

机译:通过原子层沉积工艺中的原位低温处理提高锗p沟道金属氧化物半导体场效应晶体管的氧化锆介电质

获取原文
获取原文并翻译 | 示例
           

摘要

The gate dielectric quality of germanium (Ge) p-channel metal oxide semiconductor field effect transistor (MOSFET) is enhanced by using an in-situ low temperature treatment in atomic layer deposition (ALD) process in this work. With additional oxygen flow or remote oxygen-based plasma, the dangling bond, oxygen vacancy, and oxide traps in the ALD-formed zirconia oxide gate dielectric can be effectively passivated. Unlike the traditional post deposition annealing process that generally causes an increased equivalent oxide thickness (EOT) significantly, the in-situ low temperature treatment can lower the EOT value, reduce the gate leakage current, and improve the gate dielectric quality at the same time. As a result, the sample with an additional oxygen gas flow can exhibit a lower hysteresis value, better frequency dispersion characteristics, higher on/off current ratio, lower sub-threshold swing value, higher transconductance value, higher field effect mobility value, and better uniformity, simultaneously. This dielectric quality enhancement technique with in-situ low temperature process is promising to overcome the trade-off between EOT and gate leakage for the future Ge MOSFET devices.
机译:在这项工作中,通过在原子层沉积(ALD)工艺中使用原位低温处理,可以提高锗(Ge)p沟道金属氧化物半导体场效应晶体管(MOSFET)的栅极介电质量。利用额外的氧气流或基于远程氧气的等离子体,可以有效地钝化ALD形成的氧化锆氧化物栅极电介质中的悬空键,氧空位和氧化物陷阱。与通常导致显着增加等效氧化物厚度(EOT)的传统后沉积退火工艺不同,原位低温处理可以降低EOT值,减少栅极泄漏电流并同时提高栅极介电质量。结果,具有额外氧气流的样品可以表现出较低的磁滞值,更好的频率色散特性,更高的开/关电流比,更低的亚阈值摆幅值,更高的跨导值,更高的场效应迁移率值以及更好的同时。这种具有原位低温工艺的介电质量增强技术有望为将来的Ge MOSFET器件克服EOT和栅极泄漏之间的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号