首页> 外文期刊>The Visual Computer >Retrieval of spatial-temporal motion topics from 3D skeleton data
【24h】

Retrieval of spatial-temporal motion topics from 3D skeleton data

机译:从3D骨架数据检索空间运动主题

获取原文
获取原文并翻译 | 示例

摘要

Retrieval of a specific human motion from 3D skeleton data is intractable because of its articulated complexity. We propose a context-based motion document formation method to reflect geometric variations by calculating covariance descriptors among skeletal joint locations and joint relative distances, and temporal variations by performing a coarse-to-fine segmentation on the motion sequence. The descriptors of query motion traverse all the motion categories to lock its motion words, which can be regarded as the basic units of a motion document. The discrete motion words of different spatiotemporal descriptors are also mapped to divergent index ranges to add prior knowledge of motion with temporal order to latent Dirichlet allocation (LDA). The similarity matching is based on motion-topic distributions from LDA with semantic meanings. The experiments on public datasets show the effectiveness and robustness of the proposed method over existing models.
机译:从3D骨架数据检索特定的人类运动是由于其铰接式的复杂性而难以相容。我们提出了一种基于语境的运动文件形成方法,通过计算骨骼联合位置和关节相对距离之间的协方差描述符来反映几何变化,以及通过在运动序列上执行粗到细分分段来进行时间变化。查询运动的描述符遍历所有运动类别以锁定其运动词,该运动词可以被视为运动文档的基本单位。不同的时空描述符的离散运动词也被映射到发散指数范围,以便以时间顺序向潜在的Dirichlet分配(LDA)添加前提的运动知识。相似性匹配基于来自LDA的运动主题分布,其中LDA具有语义含义。公共数据集的实验显示了在现有模型上提出的方法的有效性和稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号