首页> 外文期刊>The Visual Computer >Retrieval of spatial-temporal motion topics from 3D skeleton data
【24h】

Retrieval of spatial-temporal motion topics from 3D skeleton data

机译:从3D骨架数据中检索时空运动主题

获取原文
获取原文并翻译 | 示例

摘要

Retrieval of a specific human motion from 3D skeleton data is intractable because of its articulated complexity. We propose a context-based motion document formation method to reflect geometric variations by calculating covariance descriptors among skeletal joint locations and joint relative distances, and temporal variations by performing a coarse-to-fine segmentation on the motion sequence. The descriptors of query motion traverse all the motion categories to lock its motion words, which can be regarded as the basic units of a motion document. The discrete motion words of different spatiotemporal descriptors are also mapped to divergent index ranges to add prior knowledge of motion with temporal order to latent Dirichlet allocation (LDA). The similarity matching is based on motion-topic distributions from LDA with semantic meanings. The experiments on public datasets show the effectiveness and robustness of the proposed method over existing models.
机译:从3D骨架数据中检索特定的人体运动非常困难,因为它具有复杂的关节结构。我们提出了一种基于上下文的运动文档形成方法,该方法通过计算骨骼关节位置和关节相对距离之间的协方差描述符来反映几何变化,并通过对运动序列执行从粗到细的分割来实现时间变化。查询运动的描述符遍历所有运动类别以锁定其运动字,可以将其视为运动文档的基本单位。不同时空描述符的离散运动词也被映射到不同的索引范围,以将具有时间顺序的运动的先验知识添加到潜在狄利克雷分配(LDA)。相似度匹配基于LDA中具有语义含义的运动主题分布。在公共数据集上的实验表明,该方法相对于现有模型具有有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号