首页> 外文期刊>The Journal of Navigation >Multi-AUV Underwater Cooperative Search Algorithm based on Biological Inspired Neurodynamics Model and Velocity Synthesis
【24h】

Multi-AUV Underwater Cooperative Search Algorithm based on Biological Inspired Neurodynamics Model and Velocity Synthesis

机译:基于生物启发神经动力学模型和速度综合的多AUV水下协同搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Ocean currents impose a negative effect on Autonomous Underwater Vehicle (AUV) underwater target searches, which lengthens the search paths and consumes more energy and team effort. To solve this problem, an integrated algorithm is proposed to realise multi-AUV cooperative search in dynamic underwater environments with ocean currents. The proposed integrated algorithm combines the Biological Inspired Neurodynamics Model (BINM) and Velocity Synthesis (VS) method. Firstly, the BINM guides a team of AUVs to achieve target search in underwater environments; BINM search requires no specimen learning information and is thus easier to apply to practice, but the search path is longer because of the influence of ocean current. Next the VS algorithm offsets the effect of ocean current, and it is applied to optimise the search path for each AUV. Lastly, to demonstrate the effectiveness of the proposed integrated approach, simulation results are given in this paper. It is proved that this integrated algorithm can plan shorter search paths and thus the energy consumption is lower compared with BINM.
机译:洋流对自动水下航行器(AUV)水下目标搜索产生负面影响,这会延长搜索路径并消耗更多的精力和团队精力。为解决这一问题,提出了一种集成算法,可以在海流动态水下环境中实现多AUV协同搜索。所提出的集成算法结合了生物启发神经动力学模型(BINM)和速度合成(VS)方法。首先,BINM指导AUV小组在水下环境中实现目标搜索; BINM搜索不需要标本学习信息,因此更易于应用于实践,但是由于洋流的影响,搜索路径更长。接下来,VS算法抵消了洋流的影响,并将其用于优化每个AUV的搜索路径。最后,为了证明所提方法的有效性,本文给出了仿真结果。事实证明,该集成算法可以规划较短的搜索路径,因此与BINM相比,能耗更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号