首页> 外文期刊>Intelligent automation and soft computing >Multi-AUV task assignment and path planning with ocean current based on biological inspired self-organizing map and velocity synthesis algorithm
【24h】

Multi-AUV task assignment and path planning with ocean current based on biological inspired self-organizing map and velocity synthesis algorithm

机译:基于生物启发自组织图和速度合成算法的洋流多AUV任务分配和路径规划

获取原文
获取原文并翻译 | 示例

摘要

An integrated multiple autonomous underwater vehicles (multi-AUV) dynamic task assignment and path planning algorithm is proposed for three-dimensional underwater workspace with ocean current. The proposed algorithm in this paper combines biological inspired self-organizing map (BISOM) and a velocity synthesis algorithm (VS). The goal is to control a team of AUVs to visit all targets, while guaranteeing AUV's motion can offset the impact of ocean currents. First, the SOM neural network is developed to assign a team of AUVs to achieve multiple target locations in underwater environments. Then to avoid obstacle autonomously for each AUV to visit the corresponding target, the biological inspired neurodynamics model (BINM) is used to update weights of the winner of SOM, and realize AUVs path planning autonomously. Lastly, the velocity synthesis algorithm is applied to optimize a path for each AUV to visit the corresponding target in dynamic environment with the ocean current. To demonstrate the effectiveness of the proposed algorithm, simulation results are given in this paper. Undoubtedly, the proposed algorithm is capable of dealing with task assignment and path planning in different environment. The path of the AUV is not affected by the effects of ocean currents and there are no great changes.
机译:针对具有洋流的三维水下工作空间,提出了一种集成的多自主水下航行器(multi-AUV)动态任务分配和路径规划算法。本文提出的算法结合了生物启发自组织图(BISOM)和速度合成算法(VS)。目标是控制一支AUV小组访问所有目标,同时保证AUV的运动可以抵消洋流的影响。首先,开发了SOM神经网络以分配AUV小组以在水下环境中实现多个目标位置。然后,为了避免每个AUV自主访问障碍物的障碍,使用生物启发神经动力学模型(BINM)更新SOM获胜者的权重,并自动实现AUV路径规划。最后,应用速度合成算法为每个水下机器人在海流中动态环境中访问相应目标的路径优化。为了证明所提算法的有效性,本文给出了仿真结果。无疑,该算法能够处理不同环境下的任务分配和路径规划。 AUV的路径不受洋流的影响,并且没有很大的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号