首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A >An intelligent driver warning system for vehicle collision avoidance
【24h】

An intelligent driver warning system for vehicle collision avoidance

机译:避免车辆碰撞的智能驾驶员预警系统

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the basic architecture of an intelligent driver warning system which embodies an adaptive driver model for indirect collision avoidance. In this study the driver modeling objective is focused only on longitudinal car-following, and the model inputs are chosen to be the past history of throttle angle, controlled vehicle's speed, range and range rate to the front vehicle whereas the model output is chosen to be the current throttle angle. An artificial neural network called cerebellar model articulation controller (CMAC) and a conventional linear model (CLM) are independently applied to model the real driver data taken from test track and motorway environments. The CMAC model is chosen because of its nonlinear modeling capability, on-line learning convergence and minimum learning interference characteristics, whereas the linear model is chosen as a control benchmark to examine the nonlinear characteristic of the driver's behavior. The modeling capabilities are then evaluated based on one-step ahead prediction error performances over the training and testing sets, learning curves and correlation based model validation techniques. Modeling results suggest that the past history of throttle angle plays a critical role in reducing the deviation of the error correlation, which in turn suggest that the throttle dynamics are generally slow for road driving. Also, the time scale dependency of the model on the driver's behavior varies significantly from the test track to motorway environment. In the driver modeling experiment, the time scale was chosen such that the deviation of the error correlation was minimized. The test track results suggest that the chosen inputs are indeed relevant variables for modeling the driver's behavior. Unlike that of the CLM, the degree of the error deviation of the CMAC model was found to be acceptable for the test track scenario, implying a significant nonlinear coupling of the throttle output with the speed, range and range rate data. Whereas for the motorway data, the modeling performance for both models is comparable, and the time scale of the driver model is approximately three times longer than that used in the test track data.
机译:本文介绍了智能驾驶员预警系统的基本体系结构,该体系结构体现了用于间接避免碰撞的自适应驾驶员模型。在本研究中,驾驶员建模目标仅集中在纵向跟车方面,模型输入被选择为过去的油门角度,受控车辆的速度,到前车的范围和射程率的历史,而模型输出被选择为是当前的油门角度。分别应用称为小脑模型关节控制器(CMAC)和常规线性模型(CLM)的人工神经网络对从测试轨道和高速公路环境获取的真实驾驶员数据进行建模。选择CMAC模型是因为其具有非线性建模能力,在线学习收敛性和最小的学习干扰特性,而选择线性模型作为控制基准以检查驾驶员行为的非线性特性。然后,基于训练和测试集,学习曲线和基于相关性的模型验证技术上的一步式预测误差性能,评估建模能力。建模结果表明,过去的节气门角度历史在减少误差相关性的偏差方面起着关键作用,这反过来又表明,节气门动力学通常对于道路行驶很慢。此外,模型在时间尺度上对驾驶员行为的依赖性在测试轨道和高速公路环境之间也存在很大差异。在驾驶员模型实验中,选择时间范围以使误差相关的偏差最小。测试结果表明,所选输入确实是用于模拟驾驶员行为的相关变量。与CLM不同,发现CMAC模型的误差偏差程度对于测试轨道情况是可以接受的,这意味着节气门输出与速度,范围和范围率数据之间存在显着的非线性耦合。而对于高速公路数据,两个模型的建模性能是可比的,驾驶员模型的时间尺度大约是测试轨道数据中使用的时间尺度的三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号