首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >Robust Extended Kalman Filtering for Nonlinear Systems With Stochastic Uncertainties
【24h】

Robust Extended Kalman Filtering for Nonlinear Systems With Stochastic Uncertainties

机译:随机不确定非线性系统的鲁棒扩展卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence paper, a novel robust extended Kalman filter (REKF) for discrete-time nonlinear systems with stochastic uncertainties is proposed. The filter is derived to guarantee an optimized upper bound on the state estimation error covariance despite the model uncertainties as well as the linearization errors. Further analysis shows that the proposed filter has robustness against process noises, measurement noises, and model uncertainties. In addition, the new method is applied in an X-ray pulsar positioning system. It is illustrated through numerical simulations that the REKF is more effective than the standard extended Kalman filter and the extended robust ${rm H}_{infty}$ filter.
机译:在该对应文件中,提出了一种具有随机不确定性的离散时间非线性系统的新型鲁棒扩展卡尔曼滤波器(REKF)。尽管存在模型不确定性和线性化误差,但仍可以导出滤波器以确保状态估计误差协方差的最佳上限。进一步的分析表明,所提出的滤波器对过程噪声,测量噪声和模型不确定性具有鲁棒性。此外,该新方法还应用于X射线脉冲星定位系统。通过数值模拟表明,REKF比标准扩展卡尔曼滤波器和扩展鲁棒$ {rm H} _ {infty} $滤波器更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号