首页> 外文期刊>Statistics and computing >On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization
【24h】

On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization

机译:关于最大后验序列估计和随机全局优化的两个顺序蒙特卡洛方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of maximum a posteriori (MAP) sequence estimation in general state-space models. We consider two algorithms based on the sequential Monte Carlo (SMC) methodology (also known as particle filtering). We prove that they produce approximations of the MAP estimator and that they converge almost surely. We also derive a lower bound for the number of particles that are needed to achieve a given approximation accuracy. In the last part of the paper, we investigate the application of particle filtering and MAP estimation to the global optimization of a class of (possibly non-convex and possibly non-differentiable) cost functions. In particular, we show how to convert the cost-minimization problem into one of MAP sequence estimation for a state-space model that is "matched" to the cost of interest. We provide examples that illustrate the application of the methodology as well as numerical results.
机译:本文解决了一般状态空间模型中最大后验(MAP)序列估计的问题。我们考虑两种基于顺序蒙特卡洛(SMC)方法(也称为粒子滤波)的算法。我们证明它们产生MAP估计量的近似值,并且几乎可以肯定地收敛。我们还得出了达到给定近似精度所需的粒子数量的下限。在本文的最后一部分,我们研究了粒子滤波和MAP估计在一类(可能是非凸且可能是不可微分的)成本函数的全局优化中的应用。特别是,我们展示了如何将成本最小化问题转换为与所需成本“匹配”的状态空间模型的MAP序列估计之一。我们提供的示例说明了该方法的应用以及数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号