首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >T–S fuzzy model adopted SLAM algorithm with linear programming based data association for mobile robots
【24h】

T–S fuzzy model adopted SLAM algorithm with linear programming based data association for mobile robots

机译:T–S模糊模型采用SLAM算法和基于线性规划的移动机器人数据关联

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a Takagi–Sugeno (T–S) fuzzy model adopted solution to the simultaneous localization and mapping (SLAM) problem with two-sensor data association (TSDA) method. Nonlinear process model and observation model are formulated as pseudolinear models and rewritten with a composite model whose local models are linear according to T–S fuzzy model. Combination of these local state estimates results in global state estimate. This paper introduces an extended TSDA (ETSDA) method for the SLAM problem in mobile robot navigation based on an interior point linear programming (LP) approach. Simulation results are given to demonstrate that the ETSDA method has low computational complexity and it is more accurate than the existing single-scan joint probabilistic data association method. The above system is implemented and simulated with Matlab to claim that the proposed method yet finds a better solution to the SLAM problem than the conventional extended Kalman filter–SLAM algorithm. Keywords Simultaneous localization and mapping - Pseudolinear model - Fuzzy Kalman filtering - T–S fuzzy model - Data association
机译:本文描述了一种采用高传感器-杉野(TS)模糊模型的解决方案,该解决方案采用双传感器数据关联(TSDA)方法解决了同时定位和制图(SLAM)问题。非线性过程模型和观测模型被公式化为伪线性模型,并根据T–S模糊模型用局部模型为线性的复合模型重写。这些局部状态估计值的组合会导致全局状态估计值。本文介绍了一种基于内点线性规划(LP)方法的移动机器人导航中SLAM问题的扩展TSDA(ETSDA)方法。仿真结果表明,该方法具有较低的计算复杂度,并且比现有的单扫描联合概率数据关联方法更准确。上面的系统是用Matlab进行实现和仿真的,声称所提出的方法比传统的扩展Kalman滤波SLAM算法找到了更好的SLAM问题解决方案。关键词同时定位与映射-伪线性模型-模糊卡尔曼滤波-T–S模糊模型-数据关联

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号