首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Image category learning and classification via optimal linear combination of multiple partially matching kernels
【24h】

Image category learning and classification via optimal linear combination of multiple partially matching kernels

机译:通过多个部分匹配内核的最佳线性组合进行图像类别学习和分类

获取原文
获取原文并翻译 | 示例

摘要

Multiple kernel learning (MKL) aims at simultaneously optimizing kernel weights while training the support vector machine (SVM) to get satisfactory classification or regression results. Recent publications and developments based on SVM have shown that by using MKL one can enhance interpretability of the decision function and improve classifier performance, which motivates researchers to explore the use of homogeneous model obtained as linear combination of various types of kernels. In this paper, we show that MKL problems can be solved efficiently by modified projection gradient method and applied for image categorization and object detection. The kernel is defined as a linear combination of feature histogram function that can measure the degree of similarity of partial correspondence between feature sets for discriminative classification, which allows recognition robust to within-class variation, pose changes, and articulation. We evaluate our proposed framework on the ETH-80 dataset for several multi-level image encodings for supervised and unsupervised object recognition and report competitive results. Keywords Machine learning - Object recognition - Kernel based learning - Pyramid match kernel
机译:多核学习(MKL)旨在在训练支持向量机(SVM)的同时优化内核权重,以获得令人满意的分类或回归结果。基于SVM的最新出版物和开发表明,使用MKL可以增强决策函数的可解释性并提高分类器的性能,这促使研究人员探索使用均质模型作为各种类型内核的线性组合而获得的结果。本文表明,改进的投影梯度法可以有效地解决MKL问题,并将其应用于图像分类和目标检测。内核定义为特征直方图函数的线性组合,可以测量特征集之间的部分对应关系的相似度以进行区分性分类,从而可以对类内变化,姿势变化和清晰度进行鲁棒的识别。我们在ETH-80数据集上评估了我们提出的框架,用于几种多级图像编码,以进行有监督和无监督的目标识别,并报告竞争结果。机器学习-对象识别-基于核的学习-金字塔匹配核

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号