首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification
【24h】

Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification

机译:具有多结构元素扩展形态学特征的非线性多核学习用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel multiple kernel learning (MKL) framework to incorporate both spectral and spatial features for hyperspectral image classification, which is called multiple-structure-element nonlinear MKL (MultiSE-NMKL). In the proposed framework, multiple structure elements (MultiSEs) are employed to generate extended morphological profiles (EMPs) to present spatial–spectral information. In order to better mine interscale and interstructure similarity among EMPs, a nonlinear MKL (NMKL) is introduced to learn an optimal combined kernel from the predefined linear base kernels. We integrate this NMKL with support vector machines (SVMs) and reduce the min–max problem to a simple minimization problem. The optimal weight for each kernel matrix is then solved by a projection-based gradient descent algorithm. The advantages of using nonlinear combination of base kernels and multiSE-based EMP are that similarity information generated from the nonlinear interaction of different kernels is fully exploited, and the discriminability of the classes of interest is deeply enhanced. Experiments are conducted on three real hyperspectral data sets. The experimental results show that the proposed method achieves better performance for hyperspectral image classification, compared with several state-of-the-art algorithms. The MultiSE EMPs can provide much higher classification accuracy than using a single-SE EMP.
机译:在本文中,我们提出了一种新颖的多核学习(MKL)框架,该框架融合了光谱和空间特征,用于高光谱图像分类,称为多结构元素非线性MKL(MultiSE-NMKL)。在提出的框架中,采用多个结构元素(MultiSE)生成扩展的形态学轮廓(EMP),以表示空间光谱信息。为了更好地挖掘EMP之间的尺度间和结构相似性,引入了非线性MKL(NMKL),以从预定义的线性基础核中学习最佳组合核。我们将此NMKL与支持向量机(SVM)集成在一起,并将最小-最大问题简化为一个简单的最小化问题。然后,通过基于投影的梯度下降算法来求解每个核矩阵的最佳权重。使用基础内核和基于MultiSE的EMP的非线性组合的优势在于,可以充分利用由不同内核的非线性交互产生的相似性信息,并可以大大提高目标类别的可分辨性。在三个真实的高光谱数据集上进行了实验。实验结果表明,与几种最新算法相比,该方法在高光谱图像分类中具有更好的性能。与使用单SE EMP相比,MultiSE EMP可以提供更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号