首页> 外文期刊>Neurocomputing >Higher-level feature combination via multiple kernel learning for image classification
【24h】

Higher-level feature combination via multiple kernel learning for image classification

机译:通过多核学习进行高级特征组合以进行图像分类

获取原文
获取原文并翻译 | 示例

摘要

Feature combination is an effective way for image classification. Most of the work in this line mainly considers feature combination based on different low-level image descriptors, while ignoring the complementary property of different higher-level image features derived from the same type of low-level descriptor. In this paper, we explore the complementary property of different image features generated from one single type of low-level descriptor for image classification. Specifically, we propose a soft salient coding (SSaC) method, which overcomes the information suppression problem in the original salient coding (SaC) method. We analyse the physical meaning of the SSaC feature and the other two types of image features in the framework of Spatial Pyramid Matching (SPM), and propose using multiple kernel learning (MKL) to combine these features for classification tasks. Experiments on three image databases (Caltech-101, UIUC 8-Sports and 15-Scenes) not only verify the effectiveness of the proposed MKL combination method, but also reveal that collaboration is more important than selection for classification when limited types of image features are employed. (C) 2015 Elsevier B.V. All rights reserved.
机译:特征组合是一种有效的图像分类方法。该行中的大多数工作主要考虑基于不同低级图像描述符的特征组合,而忽略了从同一类型低级描述符获得的不同高级图像特征的互补性。在本文中,我们探索了从一种类型的低级描述符生成的图像分类所具有的不同图像特征的互补性。具体而言,我们提出了一种软显着编码(SSaC)方法,该方法克服了原始显着编码(SaC)方法中的信息抑制问题。我们在空间金字塔匹配(SPM)的框架中分析了SSaC特征和其他两种图像特征的物理含义,并提出了使用多核学习(MKL)来将这些特征结合起来进行分类的任务。在三个图像数据库(Caltech-101,UIUC 8-Sports和15-Scenes)上进行的实验不仅验证了所提出的MKL组合方法的有效性,而且还揭示了在图像类型有限的情况下,协作比分类更重要受雇。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第1期|209-217|共9页
  • 作者单位

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature coding; Image classification; Feature combination; Multiple kernel learning;

    机译:特征编码;图像分类;特征组合;多核学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号