首页> 外文期刊>Social network analysis and mining >Visual knowledge representation of conceptual semantic networks
【24h】

Visual knowledge representation of conceptual semantic networks

机译:概念语义网络的视觉知识表示

获取原文
获取原文并翻译 | 示例

摘要

This article presents methods of using visual analysis to visually represent large amounts of massive, dynamic, ambiguous data allocated in a repository of learning objects. These methods are based on the semantic representation of these resources. We use a graphical model represented as a semantic graph. The formalization of the semantic graph has been intuitively built to solve a real problem which is browsing and searching for lectures in a vast repository of colleges/courses located at Western Kentucky University (http://HyperManyMedia.wku.edu). This study combines Formal Concept Analysis (FCA) with Semantic Factoring to decompose complex, vast concepts into their primitives in order to develop knowledge representation for the HyperManyMedia [we proposed this term to refer to any educational material on the web (hyper) in a format that could be a multimedia format (image, audio, video, podcast, vodcast) or a text format (HTML webpages, PHP webpages, PDF, PowerPoint)] platform. Also, we argue that the most important factor in building the semantic representation is defining the hierarchical structure and the relationships among concepts and sub-concepts. In addition, we investigate the association between concepts using Concept Analysis to generate a lattice graph. Our domain is considered as a graph, which represents the integrated ontology of the HyperManyMedia platform. This approach has been implemented and used by online students at WKU (http://www.wku.edu).
机译:本文介绍了使用视觉分析来直观地表示分配在学习对象存储库中的大量,动态,模糊数据的方法。这些方法基于这些资源的语义表示。我们使用表示为语义图的图形模型。语义图的形式化已经直观地解决了一个实际问题,即浏览和搜索位于西肯塔基大学(http://HyperManyMedia.wku.edu)的大学/课程的大量存储库中的讲座。这项研究将形式概念分析(FCA)与语义分解相结合,以将复杂的,庞大的概念分解为它们的原语,以便开发HyperManyMedia的知识表示形式[我们提出此术语以某种格式引用网络上任何教育材料(超级)可以是多媒体格式(图像,音频,视频,播客,视频广播)或文本格式(HTML网页,PHP网页,PDF,PowerPoint)]平台。同样,我们认为构建语义表示的最重要因素是定义层次结构以及概念和子概念之间的关系。此外,我们使用概念分析来研究概念之间的关联,以生成晶格图。我们的域被视为一个图形,代表了HyperManyMedia平台的集成本体。 WKU(http://www.wku.edu)的在线学生已实施并使用了这种方法。

著录项

  • 来源
    《Social network analysis and mining》 |2011年第3期|p.219-229|共11页
  • 作者单位

    Knowledge Discovery and Web Mining Lab, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA;

    Knowledge Discovery and Web Mining Lab, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA;

    The Office of Distance Learning,Division of Extended Learning and Outreach,Western Kentucky University,Bowling Green, KY 42101, USA;

    Department of Mathematics and Computer Science,Western Kentucky University, Bowling Green, KY 42101, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号