首页> 外文期刊>Smart structures and systems >Indirect structural health monitoring of a simplified laboratory-scale bridge model
【24h】

Indirect structural health monitoring of a simplified laboratory-scale bridge model

机译:简化的实验室规模桥梁模型的间接结构健康监测

获取原文
获取原文并翻译 | 示例

摘要

An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for three different reversible proxy types of damage scenarios: changes in the support conditions (rotational restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of severity were explored. The results show that for each damage type, the classification accuracy based on data measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage.
机译:探索了一种间接方法来进行结构健康桥监控,从而实现了广泛而又经济高效的桥存量覆盖。该方法的检测能力在实验室环境中针对三种不同的可逆代理类型的损坏场景进行了测试:支撑条件的变化(旋转约束),附加阻尼和中跨增加的质量。一组频率特征与支持向量机分类器结合使用,可从经过的车辆在车轮和悬架高度测量数据,并直接从桥梁结构测量以进行比较。对于每种类型的损坏,研究了四个严重程度。结果表明,对于每种损坏类型,基于从经过的车辆测得的数据的分类准确度平均要比基于从桥梁测得的数据的分类准确度好或更好。分类精度在低(1-1.75 m / s)和高车速(2-2.75 m / s)下显示出稳定的趋势,而后者下降约7%。这些结果表明,有望实现高度灵活的结构式健康桥梁监控系统,以实现广泛而具有成本效益的桥梁库存覆盖。

著录项

  • 来源
    《Smart structures and systems》 |2014年第5期|849-868|共20页
  • 作者单位

    Universidad de Concepcion, Concepcion, Chile;

    Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;

    Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;

    Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;

    Department of Civil and Environmental Engineering, University of Pittsburgh, PA 15261, USA;

    Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    indirect SHM; laboratory experiment; damage detection; classification;

    机译:间接SHM;实验室实验损坏检测;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号