首页> 外文期刊>Mechanical systems and signal processing >Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction
【24h】

Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction

机译:通过降维间接监测桥梁模型结构健康的诊断算法

获取原文
获取原文并翻译 | 示例

摘要

We present a data-driven approach based on physical insights to achieve damage diagnosis of bridges using only vibration signals collected on board the vehicles passing over the bridge. Though data-driven models have been shown to produce promising results in this context, they generally require labeled examples to fit the models (i.e., supervised learning) and make it difficult to interpret the physical mechanisms. We posit that these shortcomings can be alleviated by studying the physical relationship between damage and the distribution of the resulting acceleration signals, and then choosing an appropriate model to invert this process. To help guide the development of appropriate damage diagnosis algorithms, we first make use of the theoretical formulation of the vehicle-bridge interaction system in the frequency domain and conduct a finite element simulation of this system. From the derived numerical solution, we observe that not only is the trend of the acceleration signals of a passing vehicle with different damage severity non-linear, but also that both the low- and high-frequency responses of a passing vehicle contain information about damage severity. Guided by these observations, we use several dimensionality reduction methods to extract representative features from the vehicle's vibration response. We then propose an unsupervised damage severity comparison model and a semi-supervised damage severity estimation model aiming at indirect monitoring of bridges. We apply the algorithms to diagnose changes that occur in a laboratory bridge model to which a concentrated mass of gradually changing magnitude is attached at mid-span. The experimental results of the damage severity comparison and estimation show that a non-convex and non-linear dimensionality reduction technique (stacked autoencoders) outperforms other linear and/or convex dimensionality reduction techniques. Overall, our results provide evidence for the applicability of indirect structural health monitoring in bridge models and suggest the feasibility of extending this approach to actual structures.
机译:我们基于物理洞察力提出一种数据驱动的方法,以仅使用通过桥梁的车辆上收集的振动信号来实现桥梁的损伤诊断。尽管已经证明数据驱动的模型在这种情况下可以产生令人鼓舞的结果,但是它们通常需要带有标签的示例以适合模型(即监督学习),并且很难解释物理机制。我们认为,可以通过研究损坏与所产生的加速度信号的分布之间的物理关系,然后选择合适的模型来反转此过程来缓解这些缺点。为了帮助指导适当的损伤诊断算法的开发,我们首先在频域中利用了车桥相互作用系统的理论公式,并对该系统进行了有限元模拟。从导出的数值解中,我们不仅观察到具有不同损伤严重性的过往车辆的加速度信号的趋势是非线性的,而且过往车辆的低频和高频响应都包含有关损伤的信息严重性。在这些观察的指导下,我们使用几种降维方法从车辆的振动响应中提取代表性特征。然后,我们针对桥梁的间接监测提出了无监督的损伤严重性比较模型和半监督的损伤严重性估计模型。我们将这些算法应用于诊断实验室桥梁模型中发生的变化,在该模型中跨度附加了逐渐变化的集中质量。损伤严重性比较和估计的实验结果表明,非凸和非线性降维技术(堆叠式自动编码器)优于其他线性和/或凸降维技术。总体而言,我们的结果为间接结构健康监测在桥梁模型中的适用性提供了证据,并提出了将该方法扩展到实际结构的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号