首页> 外文期刊>Computers & Structures >Online structural health monitoring by model order reduction and deep learning algorithms
【24h】

Online structural health monitoring by model order reduction and deep learning algorithms

机译:通过模型顺序减少和深度学习算法监测在线结构健康监测

获取原文
获取原文并翻译 | 示例

摘要

Within a structural health monitoring (SHM) framework, we propose a simulation-based classification strategy to move towards online damage localization. The procedure combines parametric Model Order Reduction (MOR) techniques and Fully Convolutional Networks (FCNs) to analyze raw vibration measurements recorded on the monitored structure. First, a dataset of possible structural responses under varying operational conditions is built through a physics-based model, allowing for a finite set of predefined damage scenarios. Then, the dataset is used for the offline training of the FCN. Because of the extremely large number of model evaluations required by the dataset construction, MOR techniques are employed to reduce the computational burden. The trained classifier is shown to be able to map unseen vibrational recordings, e.g. collected on-the-fly from sensors placed on the structure, to the actual damage state, thus providing information concerning the presence and also the location of damage. The proposed strategy has been validated by means of two case studies, concerning a 2D portal frame and a 3D portal frame railway bridge; MOR techniques have allowed us to respectively speed up the analyses about 30 and 420 times. For both the case studies, after training the classifier has attained an accuracy larger than 85%. (c) 2021 Elsevier Ltd. All rights reserved.
机译:在结构健康监测(SHM)框架内,我们提出了一种基于模拟的分类策略,以实现在线损害本地化。该过程结合了参数模型顺序(MOR)技术和完全卷积网络(FCN)来分析记录在受监控结构上的原始振动测量。首先,通过基于物理的模型构建不同操作条件下的可能结构响应的数据集,允许有限一组预定义的损坏方案。然后,数据集用于FCN的离线训练。由于数据集建设所需的大量模型评估,因此采用MOR技术来减少计算负担。训练有素的分类器被证明能够映射看不见的振动记录,例如,从放置在结构上的传感器上,对实际损坏状态收集,从而提供有关存在的信息以及损坏的位置。拟议的策略通过两种案例研究验证,关于2D门户框架和3D门户框架铁路桥; MOR技术使我们能够分别加速约30和420次的分析。对于案例研究来说,在训练后,分类器已经达到了大于85%的精度。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号