首页> 外文期刊>Smart Grid, IEEE Transactions on >Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning
【24h】

Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning

机译:基于深度神经网络和无模型强化学习的智能多微网能源管理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an intelligent multi-microgrid (MMG) energy management method is proposed based on deep neural network (DNN) and model-free reinforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease the demand-side peak-to-average ratio (PAR), and to maximize the profit from selling energy. To protect user privacy, DSO learns the MMG response by implementing a DNN without direct access to user's information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from RL, which optimizes the decision based on prediction. The simulation results from the proposed data-driven deep learning method, as well as comparisons with conventional model-based methods, substantiate the effectiveness of the proposed approach in solving power system problems with partial or uncertain information.
机译:本文提出了一种基于深度神经网络(DNN)和无模型强化学习(RL)技术的智能多微电网(MMG)能源管理方法。在研究的问题中,多个微电网连接到主配电系统,它们从配电系统购买电力以维持本地消耗。从配电系统运营商(DSO)的角度来看,目标是降低需求侧峰均比(PAR),并从销售能源中获得最大利润。为了保护用户隐私,DSO通过实施DNN来学习MMG响应,而无需直接访问用户信息。此外,DSO通过RL的Monte Carlo方法选择其零售定价策略,该方法基于预测来优化决策。所提出的数据驱动深度学习方法的仿真结果,以及与常规基于模型的方法的比较,证实了所提出的方法在解决具有部分或不确定信息的电力系统问题中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号