首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Building Energy Consumption Prediction Method Based on Integration of a Deep Neural Network and Transfer Reinforcement Learning
【24h】

A Building Energy Consumption Prediction Method Based on Integration of a Deep Neural Network and Transfer Reinforcement Learning

机译:基于深度神经网络和转移加固学习集成的建筑能耗预测方法

获取原文
获取原文并翻译 | 示例

摘要

With respect to the problem of the low accuracy of traditional building energy prediction methods, this paper proposes a novel prediction method for building energy consumption, which is based on the seamless integration of the deep neural network and transfer reinforcement learning (DNN-TRL). The method introduces a stack denoising autoencoder to extract the deep features of the building energy consumption, and shares the hidden layer structure to transfer the common information between different building energy consumption problems. The output of the DNN model is used as the input of the Sarsa algorithm to improve the prediction performance of the target building energy consumption. To verify the performance of the DNN-TRL algorithm, based on the data recorded by American Power Balti Gas and Electric Power Company, and compared with Sarsa, ADE-BPNN, and BP-Adaboost algorithms, the experimental results show that the DNN-TRL algorithm can effectively improve the prediction accuracy of the building energy consumption.
机译:关于传统建筑能量预测方法的低精度的问题,提出了一种建筑能耗的新预测方法,这是基于深度神经网络的无缝集成(DNN-TR1)。该方法介绍了一个堆栈去噪自动控制器,提取建筑能量消耗的深度特征,并共享隐藏的层结构,以在不同建筑能耗问题之间传输共同信息。 DNN模型的输出用作SARSA算法的输入,以改善目标建筑能耗的预测性能。为了验证DNN-TRL算法的性能,基于美国电力巴尔蒂天然气和电力公司记录的数据,与萨拉,ADE-BPNN和BP-Adaboost算法相比,实验结果表明DNN-TRL算法可以有效地提高建筑能耗的预测精度。

著录项

  • 来源
  • 作者单位

    Suzhou Univ Sci & Technol Inst Elect & Informat Engn Suzhou 215009 Jiangsu Peoples R China|Suzhou Univ Sci & Technol Jiangsu Key Lab Intelligent Bldg Energy Efficienc Suzhou 215009 Jiangsu Peoples R China;

    Suzhou Univ Sci & Technol Inst Elect & Informat Engn Suzhou 215009 Jiangsu Peoples R China;

    McMaster Univ Fac Engn Hamilton ON L8S 0A3 Canada;

    Suzhou Univ Sci & Technol Inst Elect & Informat Engn Suzhou 215009 Jiangsu Peoples R China;

    Suzhou Univ Sci & Technol Inst Elect & Informat Engn Suzhou 215009 Jiangsu Peoples R China|Suzhou Univ Sci & Technol Jiangsu Key Lab Intelligent Bldg Energy Efficienc Suzhou 215009 Jiangsu Peoples R China;

    Suzhou Univ Sci & Technol Inst Elect & Informat Engn Suzhou 215009 Jiangsu Peoples R China|Suzhou Univ Sci & Technol Jiangsu Key Lab Intelligent Bldg Energy Efficienc Suzhou 215009 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DNN-TRL; feature transfer; denoising autoencoder; building energy prediction;

    机译:DNN-TRL;特征转移;去噪自动化器;建筑能量预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号