首页> 外文期刊>Advanced engineering informatics >Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction
【24h】

Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction

机译:深度学习神经网络架构和方法:在建筑设计能量预测中使用基于组件的模型

获取原文
获取原文并翻译 | 示例
       

摘要

Increasing sustainability requirements make evaluating different design options for identifying energy-efficient design ever more important. These requirements demand simulation models that are not only accurate but also fast. Machine Learning (ML) enables effective mimicry of Building Performance Simulation (BPS) while generating results much faster than BPS. Component-Based Machine Learning (CBML) enhances the capabilities of the monolithic ML model. Extending monolithic ML approach, the paper presents deep-learning architectures, component development methods and evaluates their suitability for space exploration in building design. Results indicate that deep learning increases the performance of models over simple artificial neural network models. Methods such as transfer learning and Multi-Task Learning make the component development process more efficient. Testing the deep-learning model on 201 new design cases indicates that its cooling energy prediction (R2: 0.983) is similar to BPS, while errors for heating energy predictions (R2: 0.848) are higher than BPS. Higher heating energy prediction error can be resolved by collecting heating data using better design space sampling methods that cover the heating demand distribution effectively. Given that the accuracy of the deep-learning model for heating predictions can be increased, the major advantage of deep-learning models over BPS is their high computation speed. BPS required 1145 s to simulate 201 design cases. Using the deep-learning model, similar results can be obtained in 0.9 s. High computation speed makes deep-learning models suitable for design space exploration.
机译:日益增长的可持续性要求使得评估不同的设计方案以识别节能设计变得更加重要。这些要求要求仿真模型不仅准确而且快速。机器学习(ML)可以有效模仿建筑性能模拟(BPS),同时比BPS更快地生成结果。基于组件的机器学习(CBML)增强了整体式ML模型的功能。扩展了整体式ML方法,提出了深度学习的体系结构,组件开发方法,并评估了它们在建筑设计中对空间探索的适用性。结果表明,与简单的人工神经网络模型相比,深度学习可提高模型的性能。诸如转移学习和多任务学习之类的方法使组件开发过程更加高效。在201个新设计案例上测试深度学习模型表明,其冷却能量预测(R2:0.983)与BPS相似,而加热能量预测的误差(R2:0.848)高于BPS。通过使用更好的设计空间采样方法来收集热量数据,可以有效解决热量需求分布,从而解决更高的热量预测误差。鉴于可以提高供热预测的深度学习模型的准确性,因此,相比BPS,深度学习模型的主要优势在于计算速度高。 BPS需要1145秒来模拟201个设计案例。使用深度学习模型,可以在0.9?s内获得类似的结果。较高的计算速度使深度学习模型适用于设计空间探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号