首页> 外文期刊>Expert Systems with Application >A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction
【24h】

A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction

机译:结合GAM和GA应用于破产预测的神经网络模型架构的调整方法

获取原文
获取原文并翻译 | 示例

摘要

The performance of a neural network model is affected by important constituent elements such as input variables, the number of hidden nodes, and the value of the decay constant. This paper suggests a new approach to fine-tune these factors to improve their accuracy. For the input variable selection, the generalized additive model (CAM) is applied. The grid search method and the genetic algorithm are sequentially implemented to fine-tune the number of hidden nodes and the value of the weight decay parameters. This suggested method to improve the neural network model is used to predict the probability that a firm may apply for bankruptcy, and its performance is compared with the results of existing bankruptcy forecasting models such as case-based reasoning, the decision tree, the GAM, the generalized linear model, the multi-variate discriminant analysis, and the support vector machine. Our empirical results indicate that the newly tuned neural network model significantly outperforms the other models.
机译:神经网络模型的性能受到重要组成元素的影响,例如输入变量,隐藏节点的数量以及衰减常数的值。本文提出了一种微调这些因素以提高其准确性的新方法。对于输入变量选择,将应用广义加性模型(CAM)。依次执行网格搜索方法和遗传算法,以微调隐藏节点的数量和权重衰减参数的值。这种改进的神经网络模型的建议方法可用于预测企业申请破产的可能性,并将其绩效与现有破产预测模型(例如基于案例的推理,决策树,GAM,广义线性模型,多元判别分析和支持向量机。我们的经验结果表明,新调整的神经网络模型明显优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号