首页> 外文期刊>Expert Systems with Application >A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
【24h】

A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis

机译:基于反向传播神经网络和多元判别分析的多行业破产预测模型

获取原文
获取原文并翻译 | 示例

摘要

The accurate prediction of corporate bankruptcy for the firms in different industries is of a great concern to investors and creditors, as the reduction of creditors' risk and a considerable amount of saving for an industry economy can be possible. This paper presents a multi-industry investigation of the bankruptcy of Korean companies using back-propagation neural network (BNN). The industries include construction, retail, and manufacturing. The study intends to suggest the industry specific model to predict bankruptcy by selecting appropriate independent variables. The prediction accuracy of BNN is compared to that of multivariate discriminant analysis. The results indicate that prediction using industry sample outperforms the prediction using the entire sample which is not classified according to industry by 6-12%. The prediction accuracy of bankruptcy using BNN is greater than that of MDA. The study suggests insights for the practical industry model for bankruptcy prediction.
机译:对于不同行业的公司而言,准确预测公司破产情况是投资者和债权人非常关心的问题,因为可以降低债权人的风险并为行业经济节省大量资金。本文使用反向传播神经网络(BNN)对韩国公司的破产进行了多行业调查。这些行业包括建筑,零售和制造业。该研究旨在通过选择适当的自变量来建议行业特定模型来预测破产。将BNN的预测准确性与多元判别分析的准确性进行比较。结果表明,使用行业样本进行的预测要优于使用未按行业分类的整个样本进行的预测6-12%。使用BNN的破产预测准确性要高于MDA。该研究提出了实用的破产预测行业模型的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号