首页> 外文期刊>Smart Grid, IEEE Transactions on >Electric Vehicle Battery Swapping-Charging System in Power Generation Scheduling for Managing Ambient Air Quality and Human Health Conditions
【24h】

Electric Vehicle Battery Swapping-Charging System in Power Generation Scheduling for Managing Ambient Air Quality and Human Health Conditions

机译:用于管理环境空气质量和人体健康状况的发电计划中的电动汽车电池交换充电系统

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of electric vehicles (EVs) offers additional opportunities for improving the ambient air quality and reducing the associated health impacts. However, such opportunities could become unattainable if the electricity for charging EVs is mainly supplied by coal-fired units. This paper aims to enhance the environmental benefits of EVs by differentiating the marginal impacts of coal-fired unit emissions at various times and locations on ambient air pollutant concentration (AAPC) and human health conditions. The proposed cost-effective approach will assign EV battery charging loads and other electricity demands to generation units with low health impacts. The proposed air pollution dispersion model maps the emission into spatial AAPC increments (Delta AAPCs), and concentration-response function maps Delta AAPCs into health impacts. As such, we estimate differentiating health impacts of emissions at various times and locations without executing large-scale atmospheric models. We also integrate differentiating emission regulations with the joint optimization of security-constrained unit commitment (SCUC) and EV battery swapping-charging system (BSCS). BSCS refers to the optimal scheduling of an aggregated number of EV batteries which are centrally charged and then dispatched via delivery trucks to battery swapping stations (BSSs) to supply local EVs. BSCS determines optimal schedules for battery charging, swapping, and truck routing. A Lagrangian decomposition method decouples the formulated large-scale mixed-integer linear programming model into SCUC and BSCS subproblems. The case studies demonstrate the effectiveness of the proposed approach for managing ambient air quality and human health conditions.
机译:电动汽车(EV)的普及为改善环境空气质量并减少相关的健康影响提供了更多机会。但是,如果为电动汽车充电的电力主要由燃煤机组提供,那么这种机会将变得无法实现。本文旨在通过区分不同时间和地点的燃煤单位排放对环境空气污染物浓度(AAPC)和人类健康状况的边际影响来增强电动汽车的环境效益。拟议的具有成本效益的方法将为电动汽车的充电负荷和其他电力需求分配给对健康影响较小的发电机组。拟议的空气污染扩散模型将排放物映射为空间AAPC增量(增量AAPC),而浓度响应函数将增量AAPC映射为健康影响。因此,我们估计了在不执行大规模大气模型的情况下,可以区分不同时间和地点的排放物对健康的影响。我们还将差异化排放法规与安全约束单位承诺(SCUC)和EV电池交换充电系统(BSCS)的联合优化相结合。 BSCS是指对合计数量的EV电池进行最佳调度,这些电池将进行集中充电,然后通过送货卡车分配到电池交换站(BSS),以提供本地EV。 BSCS确定电池充电,交换和卡车路线安排的最佳时间表。拉格朗日分解法将制定的大规模混合整数线性规划模型解耦为SCUC和BSCS子问题。案例研究证明了所提出的方法在管理周围空气质量和人类健康状况方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号