首页> 外文期刊>Signal processing >Inverse transport problem of estimating point-like source using a Bayesian parametric method with MCMC
【24h】

Inverse transport problem of estimating point-like source using a Bayesian parametric method with MCMC

机译:贝叶斯参数MCMC估计点状源逆传输问题

获取原文
获取原文并翻译 | 示例

摘要

Recovering the origin of an incident after detection of a polluting substance in the environment is crucial to start the remediation procedures. The lack of observations, the measurement errors and the model uncertainties make the problem of source estimation an ill-posed inverse problem that requires regularization to determine a solution. The two most frequent methods of regularization are source parametrization and penalization of undesirable solutions. In this paper, the proposed approach combines both methods in order to obtain a strong regularization that is efficient in case of few and erroneous observations. Point sources with parametric temporal releases and parameter penalizations are incorporated in a Bayesian framework where observations and prior information are combined in a hierarchical probabilistic model and the posterior law is explored with a Markov Chain Monte Carlo sampling algorithm. Estimation of the source parameters is provided by the posterior mean and uncertainties are provided by the posterior variance. To validate the method, several simulated cases with different emission events are considered. Quality of the estimate as well as impact of source model errors are also investigated. Then, a comparison with two existing least squares methods is conducted, in various configurations of sensors and noise level. Finally, the behavior of the method is described on a strongly underdeterminate real case where only one sensor recorded the pollution.
机译:在环境中检测到污染物质后恢复事件的起源对于启动补救程序至关重要。缺乏观测值,测量误差和模型不确定性使得源估计问题成为不适定的逆问题,需要正则化才能确定解决方案。正则化的两种最常用方法是源参数化和不良解决方案的惩罚。在本文中,所提出的方法结合了两种方法,以便获得强大的正则化功能,这种方法在观测值很少且错误的情况下非常有效。具有参数时间释放和参数惩罚的点源被合并到贝叶斯框架中,在该框架中,观测值和先验信息被组合在一个分层概率模型中,并且使用马尔可夫链蒙特卡洛采样算法探索后验规律。源参数的估计由后验均值提供,不确定性由后验方差提供。为了验证该方法,考虑了几种具有不同排放事件的模拟案例。还研究了估计的质量以及源模型错误的影响。然后,在传感器和噪声水平的各种配置下,与两种现有的最小二乘法进行了比较。最后,在一个不确定性很高的实际案例中描述了该方法的行为,其中只有一个传感器记录了污染。

著录项

  • 来源
    《Signal processing》 |2014年第ptab期|346-361|共16页
  • 作者单位

    Lab. des Signaux et Systemes (CNRS-SUPELEC-UPS), Plateau de Moulon, 91192 Gif-sur-Yvette, France, Electricite De France R&D, 6 quai Watier, 78400 Chatou, France, Inverse problems Group, Lab. of Signal and Systems, Plateau de Moulon, 91192 Gif-sur-Yvette, France;

    Lab. des Signaux et Systemes (CNRS-SUPELEC-UPS), Plateau de Moulon, 91192 Gif-sur-Yvette, France, Lab. de l'Integration du Materiau au Systeme (University Bordeaux-CNRS-IPB), 33405 Talence, France;

    Electricite De France R&D, 6 quai Watier, 78400 Chatou, France;

    Electricite De France R&D, 6 quai Watier, 78400 Chatou, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian parametric estimation; Gibbs sampling; Metropolis-Hastings; Point-like source; Groundwater pollution;

    机译:贝叶斯参数估计;吉布斯采样;大都市-哈丁斯;点状源;地下水污染;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号