首页> 外文期刊>Signal processing >Deep learning approach for matrix completion using manifold learning
【24h】

Deep learning approach for matrix completion using manifold learning

机译:使用多方面学习的矩阵完成深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Matrix completion has received a vast amount of attention and research due to its wide applications in various study fields. Existing methods of matrix completion consider only nonlinear (or linear) relations among entries in a data matrix and ignore linear (or nonlinear) relationships latent. This paper introduces a new latent variables model for the data matrix which is a combination of linear and nonlinear models and designs a novel deep-neural-network-based matrix completion algorithm to address both linear and nonlinear relations among the entries of the data matrix. The proposed method consists of two branches. The first branch learns the latent representations of columns and reconstructs the columns of the partially observed matrix through a series of hidden neural network layers. The second branch does the same for the rows. In addition, based on multi-task learning principles, we enforce these two branches work together and introduce a new regularization technique to reduce over-fitting. More specifically, the missing entries of data are recovered as a main task and manifold learning is performed as an auxiliary task. The auxiliary task constrains the weights of the network; therefore, it can be considered as a regularizer, improving the main task and reducing over-fitting. Experimental results obtained on synthetic data and several real-world data verify the effectiveness of the proposed method compared with state-of-the-art matrix completion methods.
机译:由于其在各种研究领域的广泛应用,矩阵完成已获得大量的关注和研究。现有的矩阵完成方法仅考虑数据矩阵中的条目之间的非线性(或线性)关系,并忽略潜在的线性(或非线性)关系。本文介绍了一种新的数据矩阵模型,它是线性和非线性模型的组合,并设计一种基于新型神经网络的矩阵完成算法,以解决数据矩阵条目之间的线性和非线性关系。该方法由两个分支组成。第一分支学习列的潜在表示,并通过一系列隐藏的神经网络层重建部分观察到的矩阵的列。第二个分支对行执行相同的行为。此外,基于多任务学习原则,我们强制执行这两个分支机构,并引入了一种新的正则化技术来减少过度拟合。更具体地,作为主要任务和歧管学习作为辅助任务来恢复丢失的数据条目。辅助任务约束网络的权重;因此,它可以被视为常规器,改善主要任务并减少过度拟合。在合成数据和几个现实数据上获得的实验结果验证了所提出的方法的有效性与最先进的矩阵完成方法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号