首页> 外文期刊>Neurocomputing >Deep learning based matrix completion
【24h】

Deep learning based matrix completion

机译:基于深度学习的矩阵完成

获取原文
获取原文并翻译 | 示例

摘要

Previous matrix completion methods are generally based on linear and shallow models where the given incomplete matrices are of low-rank and the data are assumed to be generated by linear latent variable models. In this paper, we first propose a novel method called AutoEncoder based matrix completion (AEMC). The main idea of AEMC is to utilize the partially observed data to learn and construct a nonlinear latent variable model in the form of AutoEncoder. The hidden layer of the AutoEncoder has much fewer units than the visible layers do. Meanwhile, the unknown entries of the data are recovered to fit the nonlinear latent variable model. Based on AEMC, we further propose a deep learning based matrix completion (DLMC) method. In DLMC, AEMC is used as a pre-training step for both the missing entries and network parameters; the hidden layer of AEMC is then used to learn stacked AutoEncoders (SAES) with greedy layer-wise training; finally, fine-tuning is carried out on the deep network formed by AEMC and SAES to obtain the missing entries of the data and the parameters of the network. In addition, we also provide out-of-sample extensions for AEMC and DLMC to recover online incomplete data. AEMC and DLMC are compared with state-of-the-art methods in the tasks of synthetic matrix completion, image inpainting, and collaborative filtering. The experimental results verify the effectiveness and superiority of the proposed methods. (C) 2017 Elsevier B.V. All rights reserved.
机译:先前的矩阵完成方法通常基于线性和浅层模型,其中给定的不完整矩阵是低秩的,并且假定数据是由线性潜在变量模型生成的。在本文中,我们首先提出了一种新方法,称为基于矩阵的自动编码器自动完成(AEMC)。 AEMC的主要思想是利用部分观测到的数据来学习和构造以AutoEncoder形式的非线性潜在变量模型。 AutoEncoder的隐藏层的单位要少于可见层的单位。同时,恢复数据的未知条目以适应非线性潜变量模型。基于AEMC,我们进一步提出了一种基于深度学习的矩阵完成(DLMC)方法。在DLMC中,将AEMC用作缺少条目和网络参数的预训练步骤。然后,使用AEMC的隐藏层通过贪婪的分层训练来学习堆叠式自动编码器(SAES);最后,在由AEMC和SAES组成的深层网络上进行微调,以获得数据和网络参数的缺失条目。此外,我们还提供AEMC和DLMC的样本外扩展,以恢复在线不完整数据。在合成矩阵完成,图像修复和协作过滤等任务中,将AEMC和DLMC与最新方法进行了比较。实验结果验证了所提方法的有效性和优越性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号