首页> 外文期刊>Signal processing >Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification
【24h】

Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification

机译:基于SuperPixel的特征的多核稀疏表示,用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Spatial information explored by superpixels can provide significant improvement for the accuracy of hyperspectral image classification. However, superpixels based sparse representation classification (SSRC) methods always introduce joint sparse pattern, which leads to the higher computational complexity. In this paper, a novel superpixel-feature-based multiple kernel sparse representation classification (SFMK-SRC) method is proposed. Different from the traditional SSRC methods, SFMKSRC develops two new kinds of superpixel-based features by exploiting local mean operator within superpixels and weighted average operator among superpixels, which can describe the spatial information from both the local and global perspectives. Also, the novel superpixel-based features can avoid joint reconstruction to reduce the computational complexity. Then, the spectral-spatial features are extracted to combine with superpixels-based features and capture the detail structures of HSI to improve the classification performance. As pixels in high-dimensional feature space always trend to be linearly inseparable, a novel SFMKSRC model is designed to address the linearly inseparable problem of HSI classification. In addition, composite kernel constructed by generating base kernels for different features and optimally determining the weights of base kernels is embedded into MKSRC to exploit the strong correlations among different features while still preserve their diversities in a more flexible way. Experimental results on three real-world HSI datasets demonstrated that the proposed SFMKSRC method obtains a competitive performance and outperforms several state-of-the-art classification methods.
机译:SuperPixels探索的空间信息可以为高光谱图像分类的准确性提供显着改进。然而,基于SuperPixels的稀疏表示分类(SSRC)方法总是引入关节稀疏模式,这导致了更高的计算复杂度。本文提出了一种新的基于SuperPixel特征的多内核稀疏表示分类(SFMK-SRC)方法。与传统的SSRC方法不同,SFMKSRC通过利用超像素中的局部平均运算符在超像素中利用局部平均运算符来开发两种基于Superpixel的特征,这可以描述来自本地和全局视角的空间信息。此外,基于新型的超顶链的特征可以避免联合重建以降低计算复杂性。然后,提取光谱空间特征以组合基于SuperPixels的特征,并捕获HSI的细节结构以提高分类性能。由于高维特征空间中的像素总是趋向于线性不可分割的趋势,设计了一种新的SFMKSRC模型,用于解决HSI分类的线性不可分割的问题。另外,通过为不同特征生成基础内核和最佳地确定基础内核的权重构成的复合内核被嵌入到MKSRC中以利用不同特征之间的强相关性,同时仍然以更灵活的方式保持各个多样性。三个现实世界HSI数据集的实验结果证明,所提出的SFMKSRC方法获得了竞争性能,优于几种最先进的分类方法。

著录项

  • 来源
    《Signal processing》 |2020年第11期|107682.1-107682.17|共17页
  • 作者单位

    Nanjing University of Aeronautics and Astronautics College of Astronautics No.29 Yudao Street Nanjing 210016 China;

    Harbin Institute of Technology Control Science and Engineering No.92 West Da-Zhi Street Harbin 150001 China;

    Nanjing University of Aeronautics and Astronautics College of Astronautics No.29 Yudao Street Nanjing 210016 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HSI classification; Superpixels; Sparse representation; Composite kernel;

    机译:HSI分类;超像素;稀疏表示;复合核心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号