首页> 外文学位 >Sparse representation for target detection and classification in hyperspectral imagery.
【24h】

Sparse representation for target detection and classification in hyperspectral imagery.

机译:用于高光谱图像中目标检测和分类的稀疏表示。

获取原文
获取原文并翻译 | 示例

摘要

Signal sparsity is an extremely powerful feature in many classical signal processing applications. Recently, with the emerging of the compressed sensing framework, applications of sparse representation have been extended to the area of computer vision and pattern recognition and achieved state-of-the-art performance. These applications are mainly based on the observation that signals belonging to the same class approximately lie in a low-dimensional subspace. Therefore, for every typical sample there exists a sparse representation with respect to certain proper basis which contains the semantic information.;In hyperspectral imaging, remote sensors capture digital images in hundreds of continuous and narrow spectral bands. Different materials usually reflect electromagnetic energy differently, enabling discrimination of materials based on their spectral characteristics. In this work, we propose new sparse representation-based algorithms for discrimination tasks in hyperspectral images. Our approach relies on the assumption that a hyperspectral pixel can be sparsely represented by a linear combination of training samples from all classes. The sparse representation vector is discriminative and then used to determine the class label of the test pixel. Two different approaches are proposed in order to employ the important contextual information. In the first approach, an explicit Laplacian smoothing constraint is imposed on the optimization problem formulation. The second approach is via a joint sparsity model where neighboring pixels are simultaneously represented by a few common training samples, although they can be weighted with a different set of coefficients for each pixel.;The linear sparse representation models are then extended to a high-dimensional feature space induced by a kernel function, in which the data becomes more separable. Spatial coherency across neighboring pixels is also incorporated through either a kernelized joint sparsity model or a composite kernel approach that combines kernels dedicated to the spectral and spatial features. Kernel greedy optimization algorithms are suggested to solve the kernel versions of the single-pixel and multi-pixel joint sparsity-based recovery problems.;The proposed sparsity-based classifiers are applied to real hyperspectral data sets for target detection and classification. Experimental results show that the proposed technique outperforms classical algorithms in a majority of the cases. Both contextualization and kernelization of the pixel-wise linear model significantly improves the performance.;At the end of this work, we also examine the effects of several linear dimensionality techniques on the performance of detection and classification algorithms for hyperspectral images. The linear projections considered includes computationally feasible methods that can be integrated directly into the imaging sensor, as well as sophisticated but data-dependant methods. It is demonstrated that the dimensionality of hyperspectral pixels can be significantly reduced without severely affecting the algorithm performance, even with a completely random projection matrix.
机译:信号稀疏性是许多经典信号处理应用程序中极为强大的功能。近年来,随着压缩传感框架的出现,稀疏表示的应用已扩展到计算机视觉和模式识别领域,并实现了最先进的性能。这些应用主要基于以下观察:属于同一类的信号大约位于低维子空间中。因此,对于每个典型样本,在包含语义信息的某些适当基础上都存在稀疏表示。在高光谱成像中,远程传感器捕获数百个连续且狭窄的光谱带中的数字图像。不同的材料通常会以不同的方式反射电磁能量,从而可以根据其光谱特征来区分材料。在这项工作中,我们提出了新的基于稀疏表示的算法来区分高光谱图像中的任务。我们的方法基于这样的假设,即高光谱像素可以通过所有类别的训练样本的线性组合来稀疏表示。稀疏表示向量是可区分的,然后用于确定测试像素的类别标签。为了采用重要的上下文信息,提出了两种不同的方法。在第一种方法中,对优化问题的公式强加了明确的拉普拉斯平滑约束。第二种方法是通过联合稀疏模型​​,其中可以用几个通用训练样本同时表示相邻像素,尽管可以用每个像素的不同系数集对它们进行加权;然后将线性稀疏表示模型扩展为由核函数引起的维特征空间,其中数据变得更可分离。还可以通过核化的联合稀疏模型​​或组合专用于光谱和空间特征的核的复合核方法,来合并跨相邻像素的空间相干性。提出了基于核贪婪优化算法来解决单像素和多像素联合基于稀疏度的恢复问题的内核版本。提出的基于稀疏度的分类器应用于真实的高光谱数据集,用于目标检测和分类。实验结果表明,所提出的技术在大多数情况下均优于经典算法。像素化线性模型的上下文化和核化都显着提高了性能。在本文的最后,我们还研究了几种线性维技术对高光谱图像检测和分类算法性能的影响。所考虑的线性投影包括可以直接集成到成像传感器中的计算上可行的方法,以及复杂但与数据相关的方法。结果表明,即使使用完全随机的投影矩阵,也可以在不严重影响算法性能的情况下显着降低高光谱像素的维数。

著录项

  • 作者

    Chen, Yi.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号