首页> 外文期刊>Image Processing, IET >Weighted Kernel joint sparse representation for hyperspectral image classification
【24h】

Weighted Kernel joint sparse representation for hyperspectral image classification

机译:加权核联合稀疏表示用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Kernel joint sparse representation (KJSR) performs joint sparse representation in the feature space and has shown good performance for the hyperspectral image (HSI) classification. In order to distinguish spatial neighbouring pixels in the feature space, we propose two weighted KJSR (WKJSR) methods in this paper. The first one computes the weight directly based on the kernel similarity between neighbouring pixels. The second weighted scheme uses a nearest regularisation strategy to simultaneously optimise the weights of projected neighbouring pixels and joint sparse representation coefficients. The proposed WKJSR methods can exploit the similarities and differences among neighbouring pixels to obtain accurate weights for the joint sparse representation and classification. Experimental results on two benchmark HSI data sets demonstrate the effectiveness of the proposed methods.
机译:核联合稀疏表示(KJSR)在特征空间中执行联合稀疏表示,并且在高光谱图像(HSI)分类中显示出良好的性能。为了区分特征空间中的空间相邻像素,本文提出了两种加权KJSR(WKJSR)方法。第一个直接基于相邻像素之间的核相似度来计算权重。第二个加权方案使用最近的正则化策略来同时优化投影相邻像素的权重和联合稀疏表示系数。提出的WKJSR方法可以利用相邻像素之间的异同来获得准确的权重,以进行联合的稀疏表示和分类。在两个基准HSI数据集上的实验结果证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号