机译:加权核联合稀疏表示用于高光谱图像分类
Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China|Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China;
Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China|Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China;
Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China|Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China|Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA;
Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA;
Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA;
image representation; image classification; hyperspectral imaging; weighted kernel joint sparse representation coefficients; hyperspectral image classification; feature space; HSI classification; spatial neighbouring pixels; weighted KJSR method; WKJSR methods; second weighted scheme; nearest regularisation strategy; projected neighbouring pixels;
机译:基于核联合稀疏表示的加权多特征高光谱图像分类
机译:基于Log-euclidean内核的高光谱图像分类的关节稀疏表示
机译:基于自定步学习的核联合稀疏表示用于高光谱图像分类
机译:高光谱图像的自适应和旋转非局部加权关节稀疏表示分类
机译:用于高光谱图像中目标检测和分类的稀疏表示。
机译:基于多样性密度和稀疏表示模型的高光谱图像改进的分类方法
机译:高光谱图像目标检测通过加权关节K到最近的邻居和多址学习稀疏表示
机译:基于核稀疏表示的高光谱图像分类。