首页> 外文期刊>Sequential analysis >Plug-In Two-Stage Normal Density Estimation Under MISE Loss: Unknown Variance
【24h】

Plug-In Two-Stage Normal Density Estimation Under MISE Loss: Unknown Variance

机译:MISE损耗下的插件两阶段法向密度估计:未知方差

获取原文
获取原文并翻译 | 示例

摘要

Consider independent observations X_1,X_2,... having a common normal probability density function f(x; σ~2) = (σ (2π)~(1/2))~(-1) exp(-x~2/2σ~2) with -∞ < x < ∞ and unknown variance σ~2 (>0). We propose to estimate f(x; σ~2) by a plug-in maximum likelihood (ML) two-stage estimator under the mean integrated squared error (MISE) loss function. Our goal is to make the associated risk not to exceed a preassigned positive number c, referred to as the risk-bound. Because no fixed-sample-size methodology would handle this estimation problem, we design an appropriate two-stage estimation methodology that is shown to satisfy the asymptotic (ⅰ) first-order efficiency property (Theorem 2.1), (ⅱ) first-order risk-efficiency property (Theorem 2.2), as well as (ⅲ) second-order efficiency property (Theorem 2.3). The performances of the proposed methodology for small, moderate, and large sample sizes are examined with the help of simulations. We have noticed some limited robustness of the proposed methodology under mixture-normal population densities, in which case the asymptotic second-order efficiency property (Theorem 3.1) is shown. Illustrations are included with real data and analysis. Overall, we feel that the proposed two-stage plug-in density estimation methodology performs remarkably well.
机译:考虑具有共同的正态概率密度函数f(x;σ〜2)=(σ(2π)〜(1/2))〜(-1)exp(-x〜2 /的独立观测值X_1,X_2,... 2σ〜2)--∞ 0)。我们建议在平均积分平方误差(MISE)损失函数下,通过插件最大似然(ML)两级估计器来估计f(x;σ〜2)。我们的目标是使相关风险不超过预先指定的正数c(称为风险约束)。由于没有固定样本大小的方法可以处理此估计问题,因此我们设计了一种合适的两阶段估计方法,该方法可满足渐近(ⅰ)一阶效率性质(定理2.1),(ⅱ)一阶风险-效率属性(定理2.2),以及(ⅲ)二阶效率属性(定理2.3)。在模拟的帮助下,检验了所建议的方法在小样本,中样本和大样本中的性能。我们注意到,在混合正态总体密度下,所提出方法的鲁棒性有限,在这种情况下,显示了渐近二阶效率性质(定理3.1)。真实数据和分析中均包含插图。总体而言,我们认为所提出的两阶段插件密度估计方法的性能非常好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号