首页> 外文期刊>Sequential analysis >Plug-In Two-Stage and Sequential Normal Density Estimation Under MISE Loss: Both Mean and Variance are Unknown
【24h】

Plug-In Two-Stage and Sequential Normal Density Estimation Under MISE Loss: Both Mean and Variance are Unknown

机译:MISE损失下的插电式两阶段和顺序法向密度估计:均值和方差均未知

获取原文
获取原文并翻译 | 示例

摘要

Consider independent observations having a common normal probability density function f(x; μ, σ~2) = (σ2π(1/2)~(-1) exp{ - 1/2(x - μ)~2/σ~2 with x ∈ R, unknown mean μ(∈ R), and unknown variance σ~2(∈ R~+). We propose estimating f(x; μ, σ~2) with both two-stage and purely sequential methodologies under the mean integrated squared error (MISE) loss function. Our goal is to make the associated risk not to exceed a preassigned positive number c, referred to as the risk bound. No fixed-sample-size methodology would handle this estimation problem. We show that both density estimation methodologies satisfy an asymptotic (a) first-order efficiency property and a (b) first-order risk-efficiency property. Interestingly, purely sequential density estimation methodology has a better second-order efficiency property than that associated with two-stage methodology. Some robustness issues have been addressed. Small, moderate, and large sample performances are examined with the help of simulations. Illustrations are given with real data sets.
机译:考虑具有共同的法线概率密度函数f(x;μ,σ〜2)=(σ2π(1/2)〜(-1)exp {-1/2(x-μ)〜2 /σ〜2的独立观测值在x∈R,未知均值μ(∈R)和未知方差σ〜2(∈R〜+)的情况下,我们建议采用两阶段法和纯顺序方法估计f(x;μ,σ〜2)平均积分平方误差(MISE)损失函数。我们的目标是使相关风险不超过预先指定的正数c,即风险界限。没有固定样本大小的方法可以处理此估计问题。两种密度估计方法都满足渐近(a)一阶效率属性和(b)一阶风险-效率属性,有趣的是,纯顺序密度估计方法具有比两阶段关联的更好的二阶效率属性方法论。解决了一些鲁棒性问题。在模拟的帮助下检查了小样本,中样本和大样本的性能。给出的是真实的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号