首页> 外文期刊>Robotica >Neuro-fuzzy adaptive control of a revolute stewart platform carrying payloads of unknown inertia
【24h】

Neuro-fuzzy adaptive control of a revolute stewart platform carrying payloads of unknown inertia

机译:带有未知惯性载荷的旋转式Stewart平台的神经模糊自适应控制

获取原文
获取原文并翻译 | 示例

摘要

In this research, a Stewart parallel platform with rotary actuators is simulated and a prototype is tested under different operative conditions. The purpose is to make the robot robust against inertia variations considering the fact that different payloads of unknown size may be transported. Due to the complexity issued by expressing the equations of motion with independent variables, the governing equations are derived by Lagrange's method using Lagrange multipliers for imposing the kinematic constraints imposed on this parallel robot. Eliminating Lagrange multipliers by projecting the equations onto the orthogonal complement of the space of constraints, the equations of motion are transformed to a reduced form suitable for the purpose of controller design. The control approach considered here is based on a neuro-fuzzy interference method. As a first step, each revolute arm link are individually trained under different loadings and diverse maneuvers. It is purposed that once employed together, the links will have learned how to collaborate with each others for performing a common task. Training data are divided to several clusters by using a subtractive clustering algorithm. For every cluster, a fuzzy rule is derived so that the output follows the desired trajectory. In the last stage, these rules are employed by utilizing back propagation algorithms and the effectiveness of the neuro-fuzzy system becomes approved by performing multiple maneuvers and its robustness is checked under various inertia loads. The controller has ultimately been implemented on a prototype of the Stewart mechanism in order to analyze the reliability and feasibility of the method.
机译:在这项研究中,模拟了带有旋转执行器的Stewart平行平台,并在不同的操作条件下测试了原型。考虑到可以运输未知大小的不同有效载荷这一事实,目的是使机器人具有抵抗惯性变化的能力。由于用独立变量表示运动方程会带来复杂性,因此控制方程是通过拉格朗日方法使用拉格朗日乘子推导得出的,该运动方程施加了对此并行机器人施加的运动学约束。通过将方程式投影到约束空间的正交补码上来消除拉格朗日乘数,将运动方程式转换为适合于控制器设计目的的简化形式。这里考虑的控制方法基于神经模糊干扰方法。第一步,每个旋转臂连杆均在不同的负载和不同的动作下进行单独训练。目的是,一旦一起使用,链接将学习如何相互协作以执行共同的任务。通过使用减法聚类算法将训练数据分为几个聚类。对于每个聚类,都将推导出模糊规则,以便输出遵循所需的轨迹。在最后阶段,通过利用反向传播算法来使用这些规则,并且通过执行多次操作来验证神经模糊系统的有效性,并在各种惯性负载下检查其鲁棒性。该控制器最终已在Stewart机制的原型上实现,以便分析该方法的可靠性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号