首页> 外文期刊>Robotica >Adaptive motion control of arm rehabilitation robot based on impedance identification
【24h】

Adaptive motion control of arm rehabilitation robot based on impedance identification

机译:基于阻抗识别的手臂康复机器人自适应运动控制

获取原文
获取原文并翻译 | 示例

摘要

There is increasing interest in using rehabilitation robots to assist post-stroke patients during rehabilitation therapy. The motion control of the robot plays an important role in the process of functional recovery training. Due to the change of the arm impedance of the post-stroke patient in the passive recovery training, the conventional motion control based on a proportional-integral (PI) controller is difficult to produce smooth movement of the robot to track the designed trajectory set by the rehabilitation therapist. In this paper, we model the dynamics of post-stroke patient arm as an impedance model, and propose an adaptive control scheme, which consists of an adaptive PI control algorithm and an adaptive damping control algorithm, to control the rehabilitation robot moving along predefined trajectories stably and smoothly. An equivalent two-port circuit of the rehabilitation robot and human arm is built, and the passivity theory of circuits is used to analyze the stability and smoothness performance of the robot. A slide Least Mean Square with adaptive window (SLMS-AW) method is presented for on-line estimation of the parameters of the arm impedance model, which is used for adjusting the gains of the PI-damping controller. In this paper, the Barrett WAM Arm manipulator is used as the main hardware platform for the functional recovery training of the post-stroke patient. Passive recovery training has been implemented on the WAM Arm, and the experimental results demonstrate the effectiveness and potential of the proposed adaptive control strategies.
机译:在康复治疗期间,使用康复机器人来协助卒中后患者的兴趣日益浓厚。机器人的运动控制在功能恢复训练过程中起着重要作用。由于被动恢复训练中卒中后患者的手臂阻抗发生了变化,基于比例积分(PI)控制器的常规运动控制很难使机器人平稳运动,从而无法跟踪机器人设定的设计轨迹康复治疗师。在本文中,我们将中风后患者手臂的动力学建模为阻抗模型,并提出了一种自适应控制方案,该方案由自适应PI控制算法和自适应阻尼控制算法组成,以控制康复机器人沿预定轨迹运动稳定平稳。建立了康复机器人与人手臂的等效两端口电路,并利用电路的无源性理论分析了机器人的稳定性和平稳性。提出了一种带有自适应窗口的最小均方滑动(SLMS-AW)方法,用于在线估计臂阻抗模型的参数,该参数用于调整PI阻尼控制器的增益。在本文中,Barrett WAM机械臂用作中风后患者功能恢复训练的主要硬件平台。被动恢复训练已在WAM臂上进行,实验结果证明了所提出的自适应控制策略的有效性和潜力。

著录项

  • 来源
    《Robotica》 |2015年第9期|1795-1812|共18页
  • 作者单位

    Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rehabilitation robot; Stroke; Impedance model; Parameter identification; Robot control;

    机译:康复机器人;行程;阻抗模型;参数辨识;机器人控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号