首页> 外文期刊>Robotica >Experimental investigation and propulsion control for a bio-inspired robotic undulatory fin
【24h】

Experimental investigation and propulsion control for a bio-inspired robotic undulatory fin

机译:仿生机器人波状鳍的实验研究和推进控制

获取原文
获取原文并翻译 | 示例

摘要

Undulatory fin propulsion, inspired by the locomotion of aquatic species such as electric eels and cuttlefish, holds considerable potential for endowing underwater vehicles with enhanced propulsion and maneuvering abilities, to address the needs of a growing number of applications. However, there are still gaps in our understanding of the effect of the fin undulations' characteristics on the generated thrust, particularly within the context of developing propulsion control strategies for such robotic systems. Towards this end, we present the design and experimental evaluation of a robotic fin prototype, comprised of eight individually-actuated fin rays. An artificial central pattern generator (CPG) is used to produce the rays' undulatory motion pattern. Experiments are performed inside a water tank, with the robotic fin suspended from a carriage, whose motion is constrained via a linear guide. The results from a series of detailed parametric investigations reveal several important findings regarding the effect of the undulatory wave kinematics on the propulsion speed and efficiency. Based on these findings, two alternative strategies for propulsion control of the robotic fin are proposed. In the first one, the speed is varied through changes in the undulation amplitude, while the second one involves simultaneous adjustment of the undulation frequency and number of waves. These two strategies are evaluated via experiments demonstrating open-loop velocity control, as well as closed-loop position control of the prototype.
机译:受电鳗和墨鱼等水生生物运动的启发,波动式鳍板推进器具有巨大的潜力,可以赋予水下机器人以更高的推进力和操纵能力,以满足日益增长的应用需求。但是,在我们对鳍状起伏特性对产生的推力的影响的理解上仍然存在差距,尤其是在为此类机器人系统开发推进控制策略的情况下。为此,我们介绍了一个机器人鳍原型的设计和实验评估,该原型由八个单独驱动的鳍射线组成。人工中央图案发生器(CPG)用于产生光线的波动运动图案。实验是在水箱内进行的,将机器人鳍片悬挂在滑架上,该滑架的运动通过线性导轨限制。一系列详细的参数研究得出的结果揭示了有关波动波运动学对推进速度和效率的影响的几个重要发现。基于这些发现,提出了两种用于机器人鳍推进控制的替代策略。在第一个中,速度通过波动幅度的变化而变化,而在第二个中,同时调整波动频率和波数。通过展示开环速度控制以及原型的闭环位置控制的实验对这两种策略进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号