首页> 外文期刊>Research Synthesis Methods >On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis
【24h】

On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis

机译:关于贝叶斯随机效应荟萃分析中异质性参数的弱富有信息的现有分布

获取原文
获取原文并翻译 | 示例

摘要

The normal-normal hierarchical model (NNHM) constitutes a simple and widely used framework for meta-analysis. In the common case of only few studies contributing to the meta-analysis, standard approaches to inference tend to perform poorly, and Bayesian meta-analysis has been suggested as a potential solution. The Bayesian approach, however, requires the sensible specification of prior distributions. While noninformative priors are commonly used for the overall mean effect, the use of weakly informative priors has been suggested for the heterogeneity parameter, in particular in the setting of (very) few studies. To date, however, a consensus on how to generally specify a weakly informative heterogeneity prior is lacking. Here we investigate the problem more closely and provide some guidance on prior specification.
机译:正常正常的分层模型(NNHM)构成了一个简单而广泛使用的Meta分析框架。 在常见的情况下,只有少数研究助殖的研究,推理的标准方法往往表现不佳,并且已建议贝叶斯元分析作为潜在的解决方案。 然而,贝叶斯方法需要先前分布的明智规范。 虽然非信息前沿通常用于总体均值效应,但已经为异质性参数建议使用弱富有信息的前瞻,特别是在(非常)的研究中。 然而,迄今为止,缺乏关于如何通常指定弱富有信息的异质性的共识。 在这里,我们更接近地调查问题并提供了一些关于先前规范的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号