首页> 外文期刊>Radar, Sonar & Navigation, IET >Multi-target state extraction for the particle probability hypothesis density filter
【24h】

Multi-target state extraction for the particle probability hypothesis density filter

机译:粒子概率假设密度滤波器的多目标状态提取

获取原文
获取原文并翻译 | 示例

摘要

The probability hypothesis density (PHD) filter has emerged as a promising tool for dealing with the multi-target tracking problem in recent years. However, except in some special situations, closed-form recursive update equations for the PHD filter do not exist and the particle filter approaches have to be used. The output of the particle filter at each step is the particle clouds approximation of the PHD. Thus, some special algorithms are needed to extract the target states from those particles. Utilising the information of both particles?? weight and their spatial distribution, an improved algorithm named C-Clean is proposed in this study. This algorithm is comprised of two steps. First, clustering techniques are used to exploit the spatial distribution of particles. Then, within those clusters whose corresponding PHD weight is beyond some predefined threshold, the peak extraction procedure modified from the CLEAN technique is taken to extract the multi-target state. Simulation results demonstrate that its performance is better than those algorithms using the information of particles?? spatial distribution or weight only.
机译:近年来,概率假设密度(PHD)过滤器已成为解决多目标跟踪问题的有前途的工具。但是,除了在某些特殊情况下,不存在用于PHD滤波器的闭式递归更新方程,必须使用粒子滤波器方法。每个步骤的粒子滤波器的输出是PHD的粒子云近似值。因此,需要一些特殊的算法从那些粒子中提取目标状态。利用两个粒子的信息?权重及其空间分布,提出了一种改进的算法C-Clean。该算法包括两个步骤。首先,使用聚类技术来开发粒子的空间分布。然后,在那些其相应的PHD权重超出某个预定义阈值的聚类中,采用从CLEAN技术修改的峰提取过程来提取多目标状态。仿真结果表明,该算法的性能优于使用粒子信息的算法。仅空间分布或权重。

著录项

  • 来源
    《Radar, Sonar & Navigation, IET》 |2011年第8期|p.877-883|共7页
  • 作者

    Tang X.; Wei P.;

  • 作者单位

    National Laboratory of Information Control Technology for Communication System, Jiaxing, Zhejiang 314033, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号