首页> 外文期刊>Quality Control, Transactions >Visual Navigation Features Selection Algorithm Based on Instance Segmentation in Dynamic Environment
【24h】

Visual Navigation Features Selection Algorithm Based on Instance Segmentation in Dynamic Environment

机译:基于动态环境实例分段的视觉导航特征选择算法

获取原文
获取原文并翻译 | 示例

摘要

Ego-motion estimation, as one of the core technologies of unmanned systems, is widely used in autonomous robot navigation, unmanned driving, augmented reality and other fields. With the development of computer vision, there has been considerable interest in ego-motion estimation with visual navigation. One of the core technologies in Visual navigation is using the matching feature points between consecutive image frames to estimate pose. Since the feature-based method performed under the assumption of a static environment, it susceptive to the dynamic targets. Visual navigation in the dynamic environment has become an important research issue. This paper proposed a practical and robust features selection algorithm of visual navigation which avoids using the feature points on dynamic objects. Firstly, according to the instance segmentation of deep neural network, the objects are classified into potential dynamic and static categories. Subsequently, the matching features on the potential moving objects are used to update vehicle state respectively, meanwhile, the relevant reprojection error of other feature points on the background could be calculated. Eventually, the result of whether the target is moving or not will be judged by the reprojection error, and the features on dynamic targets are removed. To illustrate the effectiveness of the features selection method in the dynamic environment, the proposed algorithm is merged into an MSCKF based on tri-focal tensor geometry, and it has been evaluated in a public dataset. Experimental results demonstrated the effectiveness of the proposed method.
机译:作为无人机系统的核心技术之一,自我运动估计被广泛应用于自主机器人导航,无人驾驶,增强现实和其他领域。随着计算机愿景的发展,对可视导航的自我运动估计有相当大的兴趣。视觉导航中的一个核心技术正在使用连续图像帧之间的匹配特征点来估计姿势。由于在静态环境的假设下进行了基于特征的方法,因此它易于动态目标。动态环境中的视觉导航已成为一个重要的研究问题。本文提出了一种可视导航的实用且坚固的特征选择算法,其避免使用动态对象上的特征点。首先,根据深神经网络的实例分割,对象被分类为潜在的动态和静态类别。随后,潜在的移动物体上的匹配特征用于分别更新车辆状态,同时可以计算背景上的其他特征点的相关的刻录误差。最终,将通过重注错误判断目标是否正在移动的结果,并删除动态目标上的功能。为了说明动态环境中特征选择方法的有效性,所提出的算法基于Tri-Focal Tensor几何形状合并到MSCKF中,并且已经在公共数据集中进行了评估。实验结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号