首页> 外文期刊>Probability Theory and Related Fields >Infinite-dimensional Langevin equations: uniqueness and rate of convergence for finite-dimensional approximations
【24h】

Infinite-dimensional Langevin equations: uniqueness and rate of convergence for finite-dimensional approximations

机译:无限维Langevin方程:有限维逼近的唯一性和收敛速度

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with the infinite-dimensional stochastic equation dX= B(t, X) dt + dW driven by a Wiener process which may also cover stochastic partial differential equations. We study a certain finite dimensional approximation of B(t, X) and give a qualitative bound for its rate of convergence to be high enough to ensure the weak uniqueness for solutions of our equation. Examples are given demonstrating the force of the new condition.
机译:本文讨论了由维纳过程驱动的无穷维随机方程dX = B(t,X)dt + dW,它也可能涵盖随机偏微分方程。我们研究了B(t,X)的某种有限维逼近,并给出了其收敛速度足够高的定性界,以确保我们方程的解的唯一性较弱。举例说明了新条件的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号