首页> 外文期刊>IEEE Transactions on Power Systems >An Online Generator Start-Up Algorithm for Transmission System Self-Healing Based on MCTS and Sparse Autoencoder
【24h】

An Online Generator Start-Up Algorithm for Transmission System Self-Healing Based on MCTS and Sparse Autoencoder

机译:基于MCTS和稀疏自动的传输系统自我修复的在线发电机启动算法

获取原文
获取原文并翻译 | 示例

摘要

Generator start-up is a pivotal step of transmission system self-healing after large-scale blackouts. Considering the uncertainty of initial power system situation after blackouts and line restoration during power system restoration, an online generator start-up algorithm based on Monte Carlo tree search (MCTS) and sparse autoencoder (SAE) is proposed for real-time decision making. First, an online decision support system and a generator start-up efficiency indicator involving the total generation capability and number of restored lines are proposed. Then, the SAE is deployed to learn the data relevant to generator start-up offline to establish a value network, which is used to rapidly estimate the optimal generator start-up efficiency indicator. Next, MCTS used for the online generator start-up is improved by the modified upper confidence bound apply to tree algorithm, move pruning technique, and value network. It is used to search the next line to be restored based on real-time situation. Finally, root parallelization computation is adopted and a decision-makingmethod is proposed to improve the reliability of decision making. Simulation results of the New England 10-unit 39-bus power system and Western Shandong Power Grid of China demonstrate that the proposed algorithm can accomplish generator start-up step by step reliably.
机译:发电机启动是在大规模停电后传输系统自我修复的枢转步骤。考虑到初始电力系统情况的不确定性在电力系统恢复期间停电和线路恢复后,提出了一种基于蒙特卡罗树搜索(MCT)和稀疏自动码器(SAE)的在线发电机启动算法进行实时决策。首先,提出了一个涉及总生成功能和恢复行数的在线决策支持系统和发电机启动效率指示。然后,部署SAE以了解与生成器启动脱机相关的数据以建立一个值网络,用于快速估计最佳发电机启动效率指示符。接下来,通过修改的上置信度绑定应用于树算法,移动修剪技术和价值网络,改善了用于在线生成器启动的MCT。它用于搜索基于实时情况恢复的下一行。最后,采用了根行行化计算,提出了决策方法来提高决策的可靠性。新英格兰10单元39总线电力系统和中国西部山东电网的仿真结果表明,所提出的算法可以通过可靠的步骤完成发电机启动。

著录项

  • 来源
    《IEEE Transactions on Power Systems》 |2019年第3期|2061-2070|共10页
  • 作者单位

    Shandong Univ Key Lab Power Syst Intelligent Dispatch & Control Minist Educ Jinan 250100 Shandong Peoples R China;

    Shandong Univ Key Lab Power Syst Intelligent Dispatch & Control Minist Educ Jinan 250100 Shandong Peoples R China;

    Shandong Elect Power Dispatching & Control Ctr Jinan 250001 Shandong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Monte Carlo tree search; power system restoration; self-healing;

    机译:深入学习;蒙特卡罗树搜索;电力系统恢复;自我修复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号