首页> 外文期刊>IEEE Transactions on Power Systems >An Online Generator Start-Up Algorithm for Transmission System Self-Healing Based on MCTS and Sparse Autoencoder
【24h】

An Online Generator Start-Up Algorithm for Transmission System Self-Healing Based on MCTS and Sparse Autoencoder

机译:基于MCTS和稀疏自编码器的输电系统自愈在线发电机启动算法。

获取原文
获取原文并翻译 | 示例

摘要

Generator start-up is a pivotal step of transmission system self-healing after large-scale blackouts. Considering the uncertainty of initial power system situation after blackouts and line restoration during power system restoration, an online generator start-up algorithm based on Monte Carlo tree search (MCTS) and sparse autoencoder (SAE) is proposed for real-time decision making. First, an online decision support system and a generator start-up efficiency indicator involving the total generation capability and number of restored lines are proposed. Then, the SAE is deployed to learn the data relevant to generator start-up offline to establish a value network, which is used to rapidly estimate the optimal generator start-up efficiency indicator. Next, MCTS used for the online generator start-up is improved by the modified upper confidence bound apply to tree algorithm, move pruning technique, and value network. It is used to search the next line to be restored based on real-time situation. Finally, root parallelization computation is adopted and a decision-makingmethod is proposed to improve the reliability of decision making. Simulation results of the New England 10-unit 39-bus power system and Western Shandong Power Grid of China demonstrate that the proposed algorithm can accomplish generator start-up step by step reliably.
机译:发电机启动是大规模停电后传输系统自我修复的关键步骤。考虑到停电后电力系统初始状况的不确定性以及电力系统恢复过程中线路恢复的不确定性,提出了一种基于蒙特卡罗树搜索(MCTS)和稀疏自动编码器(SAE)的在线发电机启动算法,用于实时决策。首先,提出了一种在线决策支持系统和涉及总发电能力和恢复线路数量的发电机启动效率指标。然后,部署SAE离线学习与发电机启动有关的数据,以建立一个价值网络,该网络用于快速估算最佳发电机启动效率指标。接下来,通过修改后的置信度上限应用于树算法,移动修剪技术和价值网络,改进了用于在线发电机启动的MCTS。它用于根据实时情况搜索要还原的下一行。最后,采用根并行计算,提出了一种决策方法,以提高决策的可靠性。新英格兰10单元39总线电力系统和中国山东西部电网的仿真结果表明,该算法能够可靠地逐步完成发电机的启动。

著录项

  • 来源
    《IEEE Transactions on Power Systems》 |2019年第3期|2061-2070|共10页
  • 作者单位

    Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250100, Shandong, Peoples R China;

    Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250100, Shandong, Peoples R China;

    Shandong Elect Power Dispatching & Control Ctr, Jinan 250001, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Monte Carlo tree search; power system restoration; self-healing;

    机译:深入学习;蒙特卡罗树搜索;电力系统恢复;自我修复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号