首页> 外文期刊>IEEE Transactions on Power Systems >A recursive measurement error estimation identification method for bad data analysis in power system state estimation
【24h】

A recursive measurement error estimation identification method for bad data analysis in power system state estimation

机译:电力系统状态估计中不良数据分析的递归测量误差估计识别方法

获取原文
获取原文并翻译 | 示例

摘要

A recursive measurement error estimation identification algorithm is proposed for identifying multiple interacting bad data in power system static state estimation. A set of linearized formulae are developed and used to recursively calculate normalized residuals and normalized measurement error estimates upon which the bad data identification method is based. Sparse vector and partial factor modification techniques are used in the recursive identification calculations. Neither the submatrix of the residual sensitivity matrix, W/sub ss/, nor state reestimation is needed in the whole identification process. Digital tests on various power systems, including a 171 bus real system, are done to show the validity and efficiency of the proposed bad data identification method.
机译:提出了一种递归测量误差估计识别算法,用于识别电力系统静态估计中的多个相互作用的不良数据。开发了一组线性公式,用于递归计算归一化残差和归一化测量误差估计,这些数据是不良数据识别方法所基于的。递归识别计算中使用了稀疏向量和部分因子修改技术。在整个识别过程中,都不需要残留灵敏度矩阵的子矩阵W / sub ss /,也不需要状态重新估计。对包括171总线实际系统在内的各种电力系统进行了数字测试,以证明所提出的不良数据识别方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号