首页> 外文期刊>Power Delivery, IEEE Transactions on >Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station
【24h】

Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station

机译:电动公交车电池交换站负荷需求的随机建模和预测

获取原文
获取原文并翻译 | 示例

摘要

Electric-vehicle (EV) battery-swap stations (BSSs) have become important infrastructures for the development of EVs to extend their driving range. Due to the randomness of batteries' swapping and charging patterns, the load demand of the BSS has a stochastic nature. It is necessary to investigate the charging load characteristics of BSS to guide the coordinated battery charging for mitigating the impact of disorderly charging behaviors on the distribution network. Under the uncontrolled swapping and charging scenario, four variables are essential: 1) hourly number of EVs for battery swapping; 2) the charging start time; 3) the travel distance; and 4) the charging duration. Taking these factors into account, a novel model based on Monte Carlo simulation is presented to estimate uncontrolled energy consumption of the BSS. Then, a generic nonparametric method for the estimation of prediction uncertainty of charging load demand is introduced. Adopting an actual typical BSS as an example, the simulation results show that the proposed prediction methods of the BSS charging load and probabilistic interval are suitable for forecasting the horizon 24 h ahead.
机译:电动汽车电池交换站(BSS)已成为开发电动汽车以扩大其行驶里程的重要基础设施。由于电池交换和充电模式的随机性,BSS的负载需求具有随机性。有必要研究BSS的充电负载特性,以指导电池协调充电,以减轻无序充电行为对配电网络的影响。在不受控制的交换和充电方案下,四个变量至关重要:1)每小时进行电池交换的电动汽车数量; 2)充电开始时间; 3)行进距离; 4)充电时间。考虑到这些因素,提出了一种基于蒙特卡洛模拟的新颖模型来估计BSS的不受控制的能耗。然后,介绍了一种通用的非参数方法,用于估计充电负荷需求的预测不确定性。以实际的典型BSS为例,仿真结果表明,所提出的BSS充电负荷和概率区间的预测方法适用于预测未来24小时的地平线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号